neorv32/rtl/core/neorv32_sdi.vhd

371 lines
16 KiB
VHDL
Raw Permalink Normal View History

2024-02-24 08:25:27 +00:00
-- #################################################################################################
-- # << NEORV32 - Serial Data Interface (SDI) >> #
-- # ********************************************************************************************* #
-- # Byte-oriented serial data interface using the SPI protocol. This device acts as *device* (not #
-- # as a host). Hence, all data transfers are driven/clocked by an external SPI host controller. #
-- # ********************************************************************************************* #
-- # BSD 3-Clause License #
-- # #
-- # The NEORV32 RISC-V Processor, https://github.com/stnolting/neorv32 #
-- # Copyright (c) 2024, Stephan Nolting. All rights reserved. #
-- # #
-- # Redistribution and use in source and binary forms, with or without modification, are #
-- # permitted provided that the following conditions are met: #
-- # #
-- # 1. Redistributions of source code must retain the above copyright notice, this list of #
-- # conditions and the following disclaimer. #
-- # #
-- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
-- # conditions and the following disclaimer in the documentation and/or other materials #
-- # provided with the distribution. #
-- # #
-- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
-- # endorse or promote products derived from this software without specific prior written #
-- # permission. #
-- # #
-- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
-- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
-- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
-- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
-- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
-- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
-- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
-- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
-- # OF THE POSSIBILITY OF SUCH DAMAGE. #
-- #################################################################################################
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library neorv32;
use neorv32.neorv32_package.all;
entity neorv32_sdi is
generic (
RTX_FIFO : natural range 1 to 2**15 -- RTX fifo depth, has to be a power of two, min 1
);
port (
clk_i : in std_ulogic; -- global clock line
rstn_i : in std_ulogic; -- global reset line, low-active, async
bus_req_i : in bus_req_t; -- bus request
bus_rsp_o : out bus_rsp_t; -- bus response
sdi_csn_i : in std_ulogic; -- low-active chip-select
sdi_clk_i : in std_ulogic; -- serial clock
sdi_dat_i : in std_ulogic; -- serial data input
sdi_dat_o : out std_ulogic; -- serial data output
irq_o : out std_ulogic -- CPU interrupt
);
end neorv32_sdi;
architecture neorv32_sdi_rtl of neorv32_sdi is
-- control register --
constant ctrl_en_c : natural := 0; -- r/w: SDI enable
constant ctrl_clr_rx_c : natural := 1; -- -/w: clear RX FIFO, auto-clears
--constant ctrl_cpha_c : natural := 2; -- r/w: clock phase [TODO]
--
constant ctrl_fifo_size0_c : natural := 4; -- r/-: log2(FIFO size), bit 0 (lsb)
constant ctrl_fifo_size1_c : natural := 5; -- r/-: log2(FIFO size), bit 1
constant ctrl_fifo_size2_c : natural := 6; -- r/-: log2(FIFO size), bit 2
constant ctrl_fifo_size3_c : natural := 7; -- r/-: log2(FIFO size), bit 3 (msb)
--
constant ctrl_irq_rx_avail_c : natural := 15; -- r/-: RX FIFO not empty
constant ctrl_irq_rx_half_c : natural := 16; -- r/-: RX FIFO at least half full
constant ctrl_irq_rx_full_c : natural := 17; -- r/-: RX FIFO full
constant ctrl_irq_tx_empty_c : natural := 18; -- r/-: TX FIFO empty
--
constant ctrl_rx_avail_c : natural := 23; -- r/-: RX FIFO not empty
constant ctrl_rx_half_c : natural := 24; -- r/-: RX FIFO at least half full
constant ctrl_rx_full_c : natural := 25; -- r/-: RX FIFO full
constant ctrl_tx_empty_c : natural := 26; -- r/-: TX FIFO empty
constant ctrl_tx_full_c : natural := 27; -- r/-: TX FIFO full
-- control register (see bit definitions above) --
type ctrl_t is record
enable : std_ulogic;
clr_rx : std_ulogic;
irq_rx_avail : std_ulogic;
irq_rx_half : std_ulogic;
irq_rx_full : std_ulogic;
irq_tx_empty : std_ulogic;
end record;
signal ctrl : ctrl_t;
-- input synchronizer --
type sync_t is record
sck_ff : std_ulogic_vector(2 downto 0);
csn_ff : std_ulogic_vector(1 downto 0);
sdi_ff : std_ulogic_vector(1 downto 0);
sck : std_ulogic;
csn : std_ulogic;
sdi : std_ulogic;
end record;
signal sync : sync_t;
-- serial engine --
type serial_t is record
state : std_ulogic_vector(2 downto 0);
cnt : std_ulogic_vector(3 downto 0);
sreg : std_ulogic_vector(7 downto 0);
sdi_ff : std_ulogic;
start : std_ulogic;
done : std_ulogic;
end record;
signal serial : serial_t;
-- RX/TX FIFO interface --
type fifo_t is record
we : std_ulogic; -- write enable
re : std_ulogic; -- read enable
clear : std_ulogic; -- sync reset, high-active
wdata : std_ulogic_vector(7 downto 0); -- write data
rdata : std_ulogic_vector(7 downto 0); -- read data
avail : std_ulogic; -- data available?
free : std_ulogic; -- free entry available?
half : std_ulogic; -- half full
end record;
signal tx_fifo, rx_fifo : fifo_t;
begin
-- Bus Access -----------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
bus_access: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
bus_rsp_o.ack <= '0';
bus_rsp_o.err <= '0';
bus_rsp_o.data <= (others => '0');
ctrl.enable <= '0';
ctrl.clr_rx <= '0';
ctrl.irq_rx_avail <= '0';
ctrl.irq_rx_half <= '0';
ctrl.irq_rx_full <= '0';
ctrl.irq_tx_empty <= '0';
elsif rising_edge(clk_i) then
-- bus handshake --
bus_rsp_o.ack <= bus_req_i.stb;
bus_rsp_o.err <= '0';
bus_rsp_o.data <= (others => '0');
-- defaults --
ctrl.clr_rx <= '0';
if (bus_req_i.stb = '1') then
-- write access --
if (bus_req_i.rw = '1') then
if (bus_req_i.addr(2) = '0') then -- control register
ctrl.enable <= bus_req_i.data(ctrl_en_c);
ctrl.clr_rx <= bus_req_i.data(ctrl_clr_rx_c);
--
ctrl.irq_rx_avail <= bus_req_i.data(ctrl_irq_rx_avail_c);
ctrl.irq_rx_half <= bus_req_i.data(ctrl_irq_rx_half_c);
ctrl.irq_rx_full <= bus_req_i.data(ctrl_irq_rx_full_c);
ctrl.irq_tx_empty <= bus_req_i.data(ctrl_irq_tx_empty_c);
end if;
-- read access --
else
if (bus_req_i.addr(2) = '0') then -- control register
bus_rsp_o.data(ctrl_en_c) <= ctrl.enable;
--
bus_rsp_o.data(ctrl_fifo_size3_c downto ctrl_fifo_size0_c) <= std_ulogic_vector(to_unsigned(index_size_f(RTX_FIFO), 4));
--
bus_rsp_o.data(ctrl_irq_rx_avail_c) <= ctrl.irq_rx_avail;
bus_rsp_o.data(ctrl_irq_rx_half_c) <= ctrl.irq_rx_half;
bus_rsp_o.data(ctrl_irq_rx_full_c) <= ctrl.irq_rx_full;
bus_rsp_o.data(ctrl_irq_tx_empty_c) <= ctrl.irq_tx_empty;
--
bus_rsp_o.data(ctrl_rx_avail_c) <= rx_fifo.avail;
bus_rsp_o.data(ctrl_rx_half_c) <= rx_fifo.half;
bus_rsp_o.data(ctrl_rx_full_c) <= not rx_fifo.free;
bus_rsp_o.data(ctrl_tx_empty_c) <= not tx_fifo.avail;
bus_rsp_o.data(ctrl_tx_full_c) <= not tx_fifo.free;
else -- data register
bus_rsp_o.data(7 downto 0) <= rx_fifo.rdata;
end if;
end if;
end if;
end if;
end process bus_access;
-- Data FIFO ("Ring Buffer") --------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
-- TX --
tx_fifo_inst: entity neorv32.neorv32_fifo
generic map (
FIFO_DEPTH => RTX_FIFO, -- number of fifo entries; has to be a power of two; min 1
FIFO_WIDTH => 8, -- size of data elements in fifo (32-bit only for simulation)
FIFO_RSYNC => true, -- sync read
FIFO_SAFE => true, -- safe access
FULL_RESET => false -- no HW reset, try to infer BRAM
)
port map (
-- control --
clk_i => clk_i, -- clock, rising edge
rstn_i => rstn_i, -- async reset, low-active
clear_i => tx_fifo.clear, -- sync reset, high-active
half_o => tx_fifo.half, -- FIFO at least half-full
-- write port --
wdata_i => tx_fifo.wdata, -- write data
we_i => tx_fifo.we, -- write enable
free_o => tx_fifo.free, -- at least one entry is free when set
-- read port --
re_i => tx_fifo.re, -- read enable
rdata_o => tx_fifo.rdata, -- read data
avail_o => tx_fifo.avail -- data available when set
);
-- write access (CPU) --
tx_fifo.clear <= not ctrl.enable;
tx_fifo.wdata <= bus_req_i.data(7 downto 0);
tx_fifo.we <= '1' when (bus_req_i.stb = '1') and (bus_req_i.rw = '1') and (bus_req_i.addr(2) = '1') else '0';
-- read access (SDI) --
tx_fifo.re <= serial.start;
-- RX --
rx_fifo_inst: entity neorv32.neorv32_fifo
generic map (
FIFO_DEPTH => RTX_FIFO, -- number of fifo entries; has to be a power of two; min 1
FIFO_WIDTH => 8, -- size of data elements in fifo (32-bit only for simulation)
FIFO_RSYNC => true, -- sync read
FIFO_SAFE => true -- safe access
)
port map (
-- control --
clk_i => clk_i, -- clock, rising edge
rstn_i => rstn_i, -- async reset, low-active
clear_i => rx_fifo.clear, -- sync reset, high-active
half_o => rx_fifo.half, -- FIFO at least half-full
-- write port --
wdata_i => rx_fifo.wdata, -- write data
we_i => rx_fifo.we, -- write enable
free_o => rx_fifo.free, -- at least one entry is free when set
-- read port --
re_i => rx_fifo.re, -- read enable
rdata_o => rx_fifo.rdata, -- read data
avail_o => rx_fifo.avail -- data available when set
);
-- write access (SDI) --
rx_fifo.wdata <= serial.sreg;
rx_fifo.we <= serial.done;
-- read access (CPU) --
rx_fifo.clear <= (not ctrl.enable) or ctrl.clr_rx;
rx_fifo.re <= '1' when (bus_req_i.stb = '1') and (bus_req_i.rw = '0') and (bus_req_i.addr(2) = '1') else '0';
-- Input Synchronizer ---------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
synchronizer: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
sync.sck_ff <= (others => '0');
sync.csn_ff <= (others => '0');
sync.sdi_ff <= (others => '0');
elsif rising_edge(clk_i) then
sync.sck_ff <= sync.sck_ff(1 downto 0) & sdi_clk_i;
sync.csn_ff <= sync.csn_ff(0) & sdi_csn_i;
sync.sdi_ff <= sync.sdi_ff(0) & sdi_dat_i;
end if;
end process synchronizer;
sync.sck <= sync.sck_ff(1) xor sync.sck_ff(2); -- edge detect
sync.csn <= sync.csn_ff(1);
sync.sdi <= sync.sdi_ff(1);
-- Serial Engine --------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
serial_engine: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
serial.start <= '0';
serial.done <= '0';
serial.state <= (others => '0');
serial.cnt <= (others => '0');
serial.sreg <= (others => '0');
serial.sdi_ff <= '0';
elsif rising_edge(clk_i) then
-- defaults --
serial.start <= '0';
serial.done <= '0';
-- FSM --
serial.state(2) <= ctrl.enable;
case serial.state is
when "100" => -- enabled but idle, waiting for new transmission trigger
-- ------------------------------------------------------------
serial.cnt <= (others => '0');
if (tx_fifo.avail = '0') then -- output zero if no RX data available
serial.sreg <= (others => '0');
else
serial.sreg <= tx_fifo.rdata;
end if;
if (sync.csn = '0') then -- start new transmission on falling edge of chip-select
serial.start <= '1';
serial.state(1 downto 0) <= "10";
end if;
when "110" => -- bit phase A: sample
-- ------------------------------------------------------------
serial.sdi_ff <= sdi_dat_i;
if (sync.csn = '1') then -- transmission aborted?
serial.state(1 downto 0) <= "00";
elsif (sync.sck = '1') then
serial.cnt <= std_ulogic_vector(unsigned(serial.cnt) + 1);
serial.state(1 downto 0) <= "11";
end if;
when "111" => -- bit phase B: shift
-- ------------------------------------------------------------
if (sync.csn = '1') then -- transmission aborted?
serial.state(1 downto 0) <= "00";
elsif (sync.sck = '1') then
serial.sreg <= serial.sreg(serial.sreg'left-1 downto 0) & serial.sdi_ff;
if (serial.cnt(3) = '1') then -- done?
serial.done <= '1';
serial.state(1 downto 0) <= "00";
else
serial.state(1 downto 0) <= "10";
end if;
end if;
when others => -- "0--": disabled
-- ------------------------------------------------------------
serial.state(1 downto 0) <= "00";
end case;
end if;
end process serial_engine;
-- serial data output --
sdi_dat_o <= serial.sreg(serial.sreg'left);
-- Interrupt Generator --------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
irq_generator: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
irq_o <= '0';
elsif rising_edge(clk_i) then
irq_o <= ctrl.enable and (
(ctrl.irq_rx_avail and rx_fifo.avail) or -- RX FIFO not empty
(ctrl.irq_rx_half and rx_fifo.half) or -- RX FIFO at least half full
(ctrl.irq_rx_full and (not rx_fifo.free)) or -- RX FIFO full
(ctrl.irq_tx_empty and (not tx_fifo.avail))); -- TX FIFO empty
end if;
end process irq_generator;
end neorv32_sdi_rtl;