// ################################################################################################# // # << NEORV32 - Bootloader >> # // # ********************************************************************************************* # // # BSD 3-Clause License # // # # // # Copyright (c) 2024, Stephan Nolting. All rights reserved. # // # # // # Redistribution and use in source and binary forms, with or without modification, are # // # permitted provided that the following conditions are met: # // # # // # 1. Redistributions of source code must retain the above copyright notice, this list of # // # conditions and the following disclaimer. # // # # // # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # // # conditions and the following disclaimer in the documentation and/or other materials # // # provided with the distribution. # // # # // # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # // # endorse or promote products derived from this software without specific prior written # // # permission. # // # # // # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # // # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # // # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # // # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # // # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # // # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # // # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # // # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # // # OF THE POSSIBILITY OF SUCH DAMAGE. # // # ********************************************************************************************* # // # The NEORV32 RISC-V Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # // ################################################################################################# /**********************************************************************//** * @file bootloader.c * @author Stephan Nolting * @brief Default NEORV32 bootloader. **************************************************************************/ #include #include /**********************************************************************//** * @name Bootloader configuration (override via console to customize) * default values are used if not explicitly customized **************************************************************************/ /**@{*/ /* -------- Memory layout -------- */ /** Memory base address for the executable */ #ifndef EXE_BASE_ADDR #define EXE_BASE_ADDR 0x00000000UL #endif /* -------- UART interface -------- */ /** Set to 0 to disable UART interface */ #ifndef UART_EN #define UART_EN 1 #endif /** UART BAUD rate for serial interface */ #ifndef UART_BAUD #define UART_BAUD 19200 #endif /** Set to 1 to enable UART HW handshaking */ #ifndef UART_HW_HANDSHAKE_EN #define UART_HW_HANDSHAKE_EN 0 #endif /* -------- Status LED -------- */ /** Set to 0 to disable bootloader status LED (heart beat) at GPIO.gpio_o(STATUS_LED_PIN) */ #ifndef STATUS_LED_EN #define STATUS_LED_EN 1 #endif /** GPIO output pin for high-active bootloader status LED (heart beat) */ #ifndef STATUS_LED_PIN #define STATUS_LED_PIN 0 #endif /* -------- Auto-boot configuration -------- */ /** Time until the auto-boot sequence starts (in seconds); 0 = disabled */ #ifndef AUTO_BOOT_TIMEOUT #define AUTO_BOOT_TIMEOUT 8 #endif /* -------- SPI configuration -------- */ /** Enable SPI (default) including SPI flash boot options */ #ifndef SPI_EN #define SPI_EN 1 #endif /** SPI flash chip select (low-active) at SPI.spi_csn_o(SPI_FLASH_CS) */ #ifndef SPI_FLASH_CS #define SPI_FLASH_CS 0 #endif /** SPI flash address width (in numbers of bytes; 2,3,4) */ #ifndef SPI_FLASH_ADDR_BYTES #define SPI_FLASH_ADDR_BYTES 3 // default = 3 address bytes = 24-bit #endif /** SPI flash sector size in bytes */ #ifndef SPI_FLASH_SECTOR_SIZE #define SPI_FLASH_SECTOR_SIZE 65536 // default = 64kB #endif /** SPI flash clock pre-scaler; see #NEORV32_SPI_CTRL_enum */ #ifndef SPI_FLASH_CLK_PRSC #define SPI_FLASH_CLK_PRSC CLK_PRSC_8 #endif /** SPI flash boot base address */ #ifndef SPI_BOOT_BASE_ADDR #define SPI_BOOT_BASE_ADDR 0x00400000UL #endif /* -------- XIP configuration -------- */ /** Enable XIP boot options */ #ifndef XIP_EN #define XIP_EN 1 #endif /**@}*/ /**********************************************************************//** Executable stream source select (for copying into IMEM) **************************************************************************/ enum EXE_STREAM_SOURCE_enum { EXE_STREAM_UART = 0, /**< Get executable via UART */ EXE_STREAM_FLASH = 1 /**< Get executable via SPI flash */ }; /**********************************************************************//** * Error codes **************************************************************************/ enum ERROR_CODES_enum { ERROR_SIGNATURE = 0, /**< 0: Wrong signature in executable */ ERROR_SIZE = 1, /**< 1: Insufficient instruction memory capacity */ ERROR_CHECKSUM = 2, /**< 2: Checksum error in executable */ ERROR_FLASH = 3 /**< 3: SPI flash access error */ }; /**********************************************************************//** * Error messages **************************************************************************/ const char error_message[4][5] = { "EXE", "SIZE", "CHKS", "FLSH" }; /**********************************************************************//** * SPI flash commands **************************************************************************/ enum SPI_FLASH_CMD_enum { SPI_FLASH_CMD_PAGE_PROGRAM = 0x02, /**< Program page */ SPI_FLASH_CMD_READ = 0x03, /**< Read data */ SPI_FLASH_CMD_WRITE_DISABLE = 0x04, /**< Disallow write access */ SPI_FLASH_CMD_READ_STATUS = 0x05, /**< Get status register */ SPI_FLASH_CMD_WRITE_ENABLE = 0x06, /**< Allow write access */ SPI_FLASH_CMD_WAKE = 0xAB, /**< Wake up from sleep mode */ SPI_FLASH_CMD_SECTOR_ERASE = 0xD8 /**< Erase complete sector */ }; /**********************************************************************//** * SPI flash status register bits **************************************************************************/ enum SPI_FLASH_SREG_enum { FLASH_SREG_BUSY = 0, /**< Busy, write/erase in progress when set, read-only */ FLASH_SREG_WEL = 1 /**< Write access enabled when set, read-only */ }; /**********************************************************************//** * NEORV32 executable **************************************************************************/ enum NEORV32_EXECUTABLE_enum { EXE_OFFSET_SIGNATURE = 0, /**< Offset in bytes from start to signature (32-bit) */ EXE_OFFSET_SIZE = 4, /**< Offset in bytes from start to size (32-bit) */ EXE_OFFSET_CHECKSUM = 8, /**< Offset in bytes from start to checksum (32-bit) */ EXE_OFFSET_DATA = 12, /**< Offset in bytes from start to data (32-bit) */ }; /**********************************************************************//** * Valid executable identification signature **************************************************************************/ #define EXE_SIGNATURE 0x4788CAFE /**********************************************************************//** * Helper macros **************************************************************************/ /**@{*/ /** Actual define-to-string helper */ #define xstr(a) str(a) /** Internal helper macro */ #define str(a) #a /** Print to UART 0 */ #if (UART_EN != 0) #define PRINT_TEXT(...) neorv32_uart0_puts(__VA_ARGS__) #define PRINT_XNUM(a) print_hex_word(a) #define PRINT_GETC(a) neorv32_uart0_getc() #define PRINT_PUTC(a) neorv32_uart0_putc(a) #else #define PRINT_TEXT(...) #define PRINT_XNUM(a) #define PRINT_GETC(a) 0 #define PRINT_PUTC(a) #endif /**@}*/ /**********************************************************************//** * This global variable keeps the size of the available executable in bytes. * If =0 no executable is available (yet). **************************************************************************/ volatile uint32_t exe_available; /**********************************************************************//** * Only set during executable fetch (required for capturing STORE BUS-TIMOUT exception). **************************************************************************/ volatile uint32_t getting_exe; /**********************************************************************//** * Function prototypes **************************************************************************/ void __attribute__((interrupt("machine"))) bootloader_trap_handler(void); void print_help(void); void start_app(int boot_xip); void get_exe(int src); void save_exe(void); uint32_t get_exe_word(int src, uint32_t addr); void system_error(uint8_t err_code); void print_hex_word(uint32_t num); // SPI flash driver functions void spi_flash_wakeup(void); int spi_flash_check(void); uint8_t spi_flash_read_byte(uint32_t addr); void spi_flash_write_byte(uint32_t addr, uint8_t wdata); void spi_flash_write_word(uint32_t addr, uint32_t wdata); void spi_flash_erase_sector(uint32_t addr); void spi_flash_write_enable(void); void spi_flash_write_disable(void); uint8_t spi_flash_read_status(void); void spi_flash_write_addr(uint32_t addr); /**********************************************************************//** * Sanity check: Base RV32I ISA only! **************************************************************************/ #if defined __riscv_atomic || defined __riscv_a || __riscv_b || __riscv_compressed || defined __riscv_c || defined __riscv_mul || defined __riscv_m #warning In order to allow the bootloader to run on *any* CPU configuration it should be compiled using the base rv32i ISA only. #endif /**********************************************************************//** * Bootloader main. **************************************************************************/ int main(void) { exe_available = 0; // global variable for executable size; 0 means there is no exe available getting_exe = 0; // we are not trying to get an executable yet // configure trap handler (bare-metal, no neorv32 rte available) neorv32_cpu_csr_write(CSR_MTVEC, (uint32_t)(&bootloader_trap_handler)); #if (SPI_EN != 0) // setup SPI for clock-mode 0 if (neorv32_spi_available()) { neorv32_spi_setup(SPI_FLASH_CLK_PRSC, 0, 0, 0, 0); } #endif #if (XIP_EN != 0) // setup XIP: clock divider 0, clock mode 0 if (neorv32_xip_available()) { neorv32_xip_setup(SPI_FLASH_CLK_PRSC, 0, 0, 0, SPI_FLASH_CMD_READ); neorv32_xip_start(SPI_FLASH_ADDR_BYTES); } #endif #if (STATUS_LED_EN != 0) // activate status LED, clear all others if (neorv32_gpio_available()) { neorv32_gpio_port_set(1 << STATUS_LED_PIN); } #endif #if (UART_EN != 0) // setup UART0 neorv32_uart0_setup(UART_BAUD, 0); #if (UART_HW_HANDSHAKE_EN != 0) neorv32_uart0_rtscts_enable(); #endif #endif // Configure machine system timer interrupt if (neorv32_mtime_available()) { NEORV32_MTIME->TIME_LO = 0; NEORV32_MTIME->TIME_HI = 0; NEORV32_MTIME->TIMECMP_LO = NEORV32_SYSINFO->CLK/4; NEORV32_MTIME->TIMECMP_HI = 0; neorv32_cpu_csr_write(CSR_MIE, 1 << CSR_MIE_MTIE); // activate MTIME IRQ source neorv32_cpu_csr_set(CSR_MSTATUS, 1 << CSR_MSTATUS_MIE); // enable machine-mode interrupts } // ------------------------------------------------ // Show bootloader intro and system info // ------------------------------------------------ PRINT_TEXT("\n\n\n<< NEORV32 Bootloader >>\n\n" "BLDV: "__DATE__"\nHWV: "); PRINT_XNUM(neorv32_cpu_csr_read(CSR_MIMPID)); PRINT_TEXT("\nCLK: "); PRINT_XNUM(NEORV32_SYSINFO->CLK); PRINT_TEXT("\nMISA: "); PRINT_XNUM(neorv32_cpu_csr_read(CSR_MISA)); PRINT_TEXT("\nXISA: "); PRINT_XNUM(neorv32_cpu_csr_read(CSR_MXISA)); PRINT_TEXT("\nSOC: "); PRINT_XNUM(NEORV32_SYSINFO->SOC); PRINT_TEXT("\nIMEM: "); PRINT_XNUM((uint32_t)(1 << NEORV32_SYSINFO->MEM[SYSINFO_MEM_IMEM]) & 0xFFFFFFFCUL); PRINT_TEXT("\nDMEM: "); PRINT_XNUM((uint32_t)(1 << NEORV32_SYSINFO->MEM[SYSINFO_MEM_DMEM]) & 0xFFFFFFFCUL); PRINT_TEXT("\n"); // ------------------------------------------------ // Auto boot sequence // ------------------------------------------------ #if (SPI_EN != 0) #if (AUTO_BOOT_TIMEOUT != 0) if (neorv32_mtime_available()) { PRINT_TEXT("\nAutoboot in "xstr(AUTO_BOOT_TIMEOUT)"s. Press any key to abort.\n"); uint64_t timeout_time = neorv32_mtime_get_time() + (uint64_t)(AUTO_BOOT_TIMEOUT * NEORV32_SYSINFO->CLK); while(1){ if (neorv32_uart0_available()) { // wait for any key to be pressed if (neorv32_uart0_char_received()) { neorv32_uart0_char_received_get(); // discard received char break; } } if (neorv32_mtime_get_time() >= timeout_time) { // timeout? start auto boot sequence get_exe(EXE_STREAM_FLASH); // try booting from flash PRINT_TEXT("\n"); start_app(0); while(1); } } PRINT_TEXT("Aborted.\n\n"); } #else PRINT_TEXT("Aborted.\n\n"); #endif #else PRINT_TEXT("\n\n"); #endif print_help(); // ------------------------------------------------ // Bootloader console // ------------------------------------------------ while (1) { PRINT_TEXT("\nCMD:> "); char c = PRINT_GETC(); PRINT_PUTC(c); // echo PRINT_TEXT("\n"); if (c == 'r') { // restart bootloader asm volatile ("li t0, %[input_i]; jr t0" : : [input_i] "i" (BOOTLOADER_BASE_ADDRESS)); // jump to beginning of boot ROM __builtin_unreachable(); } else if (c == 'h') { // help menu print_help(); } else if (c == 'u') { // get executable via UART get_exe(EXE_STREAM_UART); } #if (SPI_EN != 0) else if (c == 's') { // program flash from memory (IMEM) save_exe(); } else if (c == 'l') { // copy executable from flash get_exe(EXE_STREAM_FLASH); } #endif else if (c == 'e') { // start application program from IMEM if (exe_available == 0) { // executable available? PRINT_TEXT("No executable."); } else { start_app(0); // run app from IMEM } } #if (XIP_EN != 0) else if (c == 'x') { // boot from SPI flash via XIP if (neorv32_xip_available()) { // XIP module really implemented? start_app(1); } else { PRINT_TEXT("Invalid CMD"); } } #endif else if (c == '?') { PRINT_TEXT("by Stephan Nolting\ngithub.com/stnolting/neorv32"); } else { // unknown command PRINT_TEXT("Invalid CMD"); } } // while(1) return 0; // bootloader should never return } /**********************************************************************//** * Print help menu. **************************************************************************/ void print_help(void) { PRINT_TEXT("Available CMDs:\n" " h: Help\n" " r: Restart\n" " u: Upload\n" #if (SPI_EN != 0) " s: Store to flash\n" " l: Load from flash\n" #endif #if (XIP_EN != 0) " x: Boot from flash (XIP)\n" #endif " e: Execute"); } /**********************************************************************//** * Start application program. * * @param boot_xip Set to boot via XIP. **************************************************************************/ void start_app(int boot_xip) { // deactivate global IRQs neorv32_cpu_csr_clr(CSR_MSTATUS, 1 << CSR_MSTATUS_MIE); register uint32_t app_base = (uint32_t)EXE_BASE_ADDR; // default = start at beginning of IMEM #if (XIP_EN != 0) if (boot_xip) { app_base = (uint32_t)(XIP_MEM_BASE_ADDRESS + SPI_BOOT_BASE_ADDR); // start from XIP mapped address } #endif PRINT_TEXT("Booting from "); PRINT_XNUM(app_base); PRINT_TEXT("...\n\n"); #if (STATUS_LED_EN != 0) // shut down heart beat LED if (neorv32_gpio_available()) { neorv32_gpio_port_set(0); } #endif // wait for UART0 to finish transmitting while (neorv32_uart0_tx_busy()); // start application asm volatile ("jalr ra, %0" : : "r" (app_base)); __builtin_unreachable(); while (1); // should never be reached } /**********************************************************************//** * Bootloader trap handler. Used for the MTIME tick and to capture any other traps. * * @note Since we have no runtime environment, we have to use the interrupt attribute here. **************************************************************************/ void __attribute__((interrupt("machine"))) bootloader_trap_handler(void) { register uint32_t mcause = neorv32_cpu_csr_read(CSR_MCAUSE); // Machine timer interrupt if (mcause == TRAP_CODE_MTI) { // raw exception code for MTI #if (STATUS_LED_EN != 0) if (neorv32_gpio_available()) { neorv32_gpio_pin_toggle(STATUS_LED_PIN); // toggle status LED } #endif // set time for next IRQ if (neorv32_mtime_available()) { neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + (NEORV32_SYSINFO->CLK/4)); } } // Bus store access error during get_exe else if ((mcause == TRAP_CODE_S_ACCESS) && (getting_exe)) { system_error(ERROR_SIZE); // -> seems like executable is too large } // Anything else (that was not expected); output exception notifier and try to resume else { register uint32_t mepc = neorv32_cpu_csr_read(CSR_MEPC); #if (UART_EN != 0) if (neorv32_uart0_available()) { PRINT_TEXT("\nERR_EXC "); PRINT_XNUM(mcause); PRINT_PUTC(' '); PRINT_XNUM(mepc); PRINT_PUTC(' '); PRINT_XNUM(neorv32_cpu_csr_read(CSR_MTVAL)); PRINT_TEXT("\n"); } #endif neorv32_cpu_csr_write(CSR_MEPC, mepc + 4); // advance to next instruction } } /**********************************************************************//** * Get executable stream. * * @param src Source of executable stream data. See #EXE_STREAM_SOURCE_enum. **************************************************************************/ void get_exe(int src) { getting_exe = 1; // to inform trap handler we were trying to get an executable // flash image base address uint32_t addr = (uint32_t)SPI_BOOT_BASE_ADDR; // get image from UART? if (src == EXE_STREAM_UART) { PRINT_TEXT("Awaiting neorv32_exe.bin... "); } #if (SPI_EN != 0) else { PRINT_TEXT("Loading (@"); PRINT_XNUM(addr); PRINT_TEXT(")...\n"); // flash checks if (((NEORV32_SYSINFO->SOC & (1<=0; i-=4) { PRINT_PUTC(hex_symbols[(num >> i) & 0xf]); } #endif } // ------------------------------------------------------------------------------------- // SPI flash driver functions // ------------------------------------------------------------------------------------- /**********************************************************************//** * Wake up flash from deep sleep state **************************************************************************/ void spi_flash_wakeup(void) { #if (SPI_EN != 0) neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_WAKE); neorv32_spi_cs_dis(); #endif } /**********************************************************************//** * Check if SPI and flash are available/working by making sure the WEL * flag of the flash status register can be set and cleared again. * * @return 0 if success, -1 if error **************************************************************************/ int spi_flash_check(void) { #if (SPI_EN != 0) // The flash may have been set to sleep prior to reaching this point. Make sure it's alive spi_flash_wakeup(); // set WEL spi_flash_write_enable(); if ((spi_flash_read_status() & (1 << FLASH_SREG_WEL)) == 0) { // fail if WEL is cleared return -1; } // clear WEL spi_flash_write_disable(); if ((spi_flash_read_status() & (1 << FLASH_SREG_WEL)) != 0) { // fail if WEL is set return -1; } return 0; #else return -1; #endif } /**********************************************************************//** * Read byte from SPI flash. * * @param[in] addr Flash read address. * @return Read byte from SPI flash. **************************************************************************/ uint8_t spi_flash_read_byte(uint32_t addr) { #if (SPI_EN != 0) neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_READ); spi_flash_write_addr(addr); uint8_t rdata = neorv32_spi_trans(0); neorv32_spi_cs_dis(); return rdata; #else return 0; #endif } /**********************************************************************//** * Write byte to SPI flash. * * @param[in] addr SPI flash read address. * @param[in] wdata SPI flash read data. **************************************************************************/ void spi_flash_write_byte(uint32_t addr, uint8_t wdata) { #if (SPI_EN != 0) spi_flash_write_enable(); // allow write-access neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_PAGE_PROGRAM); spi_flash_write_addr(addr); neorv32_spi_trans(wdata); neorv32_spi_cs_dis(); while(1) { if ((spi_flash_read_status() & (1 << FLASH_SREG_BUSY)) == 0) { // write in progress flag cleared? break; } } #endif } /**********************************************************************//** * Write word to SPI flash. * * @param addr SPI flash write address. * @param wdata SPI flash write data. **************************************************************************/ void spi_flash_write_word(uint32_t addr, uint32_t wdata) { #if (SPI_EN != 0) union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)]; } data; data.uint32 = wdata; // little-endian byte order int i; for (i=0; i<4; i++) { spi_flash_write_byte(addr + i, data.uint8[i]); } #endif } /**********************************************************************//** * Erase sector (64kB) at base address. * * @param[in] addr Base address of sector to erase. **************************************************************************/ void spi_flash_erase_sector(uint32_t addr) { #if (SPI_EN != 0) spi_flash_write_enable(); // allow write-access neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_SECTOR_ERASE); spi_flash_write_addr(addr); neorv32_spi_cs_dis(); while(1) { if ((spi_flash_read_status() & (1 << FLASH_SREG_BUSY)) == 0) { // write in progress flag cleared? break; } } #endif } /**********************************************************************//** * Enable flash write access. **************************************************************************/ void spi_flash_write_enable(void) { #if (SPI_EN != 0) neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_WRITE_ENABLE); neorv32_spi_cs_dis(); #endif } /**********************************************************************//** * Disable flash write access. **************************************************************************/ void spi_flash_write_disable(void) { #if (SPI_EN != 0) neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_WRITE_DISABLE); neorv32_spi_cs_dis(); #endif } /**********************************************************************//** * Read flash status register. * * @return SPI flash status register (32-bit zero-extended). **************************************************************************/ uint8_t spi_flash_read_status(void) { #if (SPI_EN != 0) neorv32_spi_cs_en(SPI_FLASH_CS); neorv32_spi_trans(SPI_FLASH_CMD_READ_STATUS); uint8_t res = neorv32_spi_trans(0); neorv32_spi_cs_dis(); return res; #else return 0; #endif } /**********************************************************************//** * Send address word to flash (MSB-first, 16-bit, 24-bit or 32-bit address size). * * @param[in] addr Address word. **************************************************************************/ void spi_flash_write_addr(uint32_t addr) { #if (SPI_EN == 0) return; #endif union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)]; } address; address.uint32 = addr; #if (SPI_FLASH_ADDR_BYTES == 2) neorv32_spi_trans(address.uint8[1]); neorv32_spi_trans(address.uint8[0]); #elif (SPI_FLASH_ADDR_BYTES == 3) neorv32_spi_trans(address.uint8[2]); neorv32_spi_trans(address.uint8[1]); neorv32_spi_trans(address.uint8[0]); #elif (SPI_FLASH_ADDR_BYTES == 4) neorv32_spi_trans(address.uint8[3]); neorv32_spi_trans(address.uint8[2]); neorv32_spi_trans(address.uint8[1]); neorv32_spi_trans(address.uint8[0]); #else #error "Unsupported SPI_FLASH_ADDR_BYTES configuration!" #endif }