// ################################################################################################# // # << NEORV32 - Demo for the Execute In-Place (XIP) Module >> # // # ********************************************************************************************* # // # BSD 3-Clause License # // # # // # Copyright (c) 2024, Stephan Nolting. All rights reserved. # // # # // # Redistribution and use in source and binary forms, with or without modification, are # // # permitted provided that the following conditions are met: # // # # // # 1. Redistributions of source code must retain the above copyright notice, this list of # // # conditions and the following disclaimer. # // # # // # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # // # conditions and the following disclaimer in the documentation and/or other materials # // # provided with the distribution. # // # # // # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # // # endorse or promote products derived from this software without specific prior written # // # permission. # // # # // # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # // # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # // # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # // # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # // # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # // # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # // # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # // # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # // # OF THE POSSIBILITY OF SUCH DAMAGE. # // # ********************************************************************************************* # // # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # // ################################################################################################# /**********************************************************************//** * @file demo_xip/main.c * @author Stephan Nolting * @brief Interactive console program to upload and execute a XIP program. **************************************************************************/ #include /**********************************************************************//** * @name User configuration **************************************************************************/ /**@{*/ /** UART BAUD rate */ #define BAUD_RATE 19200 /** Flash base address (32-bit) */ #define FLASH_BASE 0x00400000 /** Flash address bytes */ #define FLASH_ABYTES 3 /** XIP SPI clock prescaler select */ #define XIP_CLK_PRSC CLK_PRSC_128 /** Executable RAM buffer size in bytes */ #define BUFFER_SIZE (7*1024) /**@}*/ /**********************************************************************//** * SPI flash commands **************************************************************************/ enum SPI_FLASH_CMD { SPI_FLASH_CMD_WRITE = 0x02, /**< Write data */ SPI_FLASH_CMD_READ = 0x03, /**< Read data */ SPI_FLASH_CMD_READ_STATUS = 0x05, /**< Get status register */ SPI_FLASH_CMD_WRITE_ENABLE = 0x06, /**< Allow write access */ SPI_FLASH_CMD_SECTOR_ERASE = 0xD8 /**< Erase complete sector */ }; /**********************************************************************//** * Valid executable identification signature **************************************************************************/ #define EXE_SIGNATURE 0x4788CAFE /**********************************************************************//** * @name Prototypes **************************************************************************/ void xip_flash_erase_sector(uint32_t base_addr); void xip_flash_program(uint32_t *src, uint32_t base_addr, uint32_t size); int uart_get_executable(uint32_t *dst, uint32_t *size); uint32_t uart_get_word(void); /**********************************************************************//** * @name RAM storage for executable **************************************************************************/ uint32_t ram_buffer[BUFFER_SIZE/4]; /**********************************************************************//** * Main function * * @note This program requires the XIP module and UART0. * * @return 0 if execution was successful **************************************************************************/ int main() { // capture all exceptions and give debug info via UART // this is not required, but keeps us safe neorv32_rte_setup(); // setup UART at default baud rate, no interrupts neorv32_uart0_setup(BAUD_RATE, 0); // check if XIP module is implemented at all if (neorv32_xip_available() == 0) { neorv32_uart0_printf("Error! XIP module not synthesized!\n"); return 1; } // ---------------------------------------------------------- // Intro and setup // ---------------------------------------------------------- neorv32_uart0_printf("<< XIP Demo Program >>\n\n"); // configuration note neorv32_uart0_printf("Flash base address: 0x%x\n" "XIP base address: 0x%x\n" "Flash address bytes: %u\n", (uint32_t)FLASH_BASE, (uint32_t)XIP_MEM_BASE_ADDRESS, (uint32_t)FLASH_ABYTES); // warning if XIP cache is not implemented if ((NEORV32_XIP->CTRL & (1 << XIP_CTRL_BURST_EN)) == 0) { neorv32_uart0_printf("WARNING! No XIP cache implemented! The XIP program might run very slow...\n"); } // reset XIP module and configure basic SPI properties // * clock prescaler = XIP_CLK_PRSC (see defines) // * clock divider = 4 // * clock mode 0 (cpol = 0, cpha = 0) // * flash read command = SPI_FLASH_CMD_READ (see defines) // -> this function will also send 64 dummy clock cycles via the XIP's SPI port (with CS disabled) neorv32_xip_setup(XIP_CLK_PRSC, 4, 0, 0, SPI_FLASH_CMD_READ); neorv32_uart0_printf("XIP SPI clock speed: %u Hz\n\n", neorv32_xip_get_clock_speed()); // ---------------------------------------------------------- // Get executable for flash // ---------------------------------------------------------- neorv32_uart0_printf("Compile a program for the XIP flash:\n" "\n" " Navigate to any example program folder (like 'neorv32/sw/example/hello_word').\n" " Compile the program but relocate the executable to the beginning of the XIP flash:\n" " make MARCH=rv32i_zicsr_zifencei USER_FLAGS+=\"-Wl,--defsym,__neorv32_rom_base=0x%x\" clean_all exe\n\n", (uint32_t)(XIP_MEM_BASE_ADDRESS + FLASH_BASE)); neorv32_uart0_printf("Press any key when you are ready.\n\n"); neorv32_uart0_getc(); // wait for any key neorv32_uart0_printf("Now send the generated neorv32_exe.bin file in raw byte mode...\n"); uint32_t exe_size = 0; int rc = uart_get_executable(&ram_buffer[0], &exe_size); // upload ok? if (rc) { neorv32_uart0_printf("[ERROR] Upload failed with error code %d!\n", rc); return -1; } // image size in range? if (exe_size > BUFFER_SIZE) { neorv32_uart0_printf("[ERROR] Executable size out of range (%u bytes, maximum = %u bytes)!\n", exe_size, BUFFER_SIZE); return -1; } else { neorv32_uart0_printf("Executable upload successful (%u bytes).\n\n", exe_size); } // ---------------------------------------------------------- // Program flash // ---------------------------------------------------------- // NOTE: this (direct SPI access via the XIP module) has to be done before the actual XIP mode is enabled! neorv32_uart0_printf("Erasing XIP flash (base = 0x%x)...\n", (uint32_t)FLASH_BASE); xip_flash_erase_sector(FLASH_BASE); neorv32_uart0_printf("Programming XIP flash (%u bytes)...\n", exe_size); xip_flash_program((uint32_t*)&ram_buffer[0], FLASH_BASE, exe_size); // ---------------------------------------------------------- // Prepare XIP execution // ---------------------------------------------------------- // configure and enable the actual XIP mode // * configure FLASH_ABYTES address bytes send to the SPI flash for addressing // * map the XIP flash to the address space starting at XIP_MEM_BASE_ADDRESS - only the 4 MSBs are relevant here // after calling this function the SPI flash is mapped to the processor's address space and is accessible as "normal" // memory-mapped read-only memory if (neorv32_xip_start(FLASH_ABYTES)) { neorv32_uart0_printf("Error! XIP mode configuration error!\n"); return 1; } // since the flash is now mapped to the processor's address space we can dump its content by using normal memory accesses neorv32_uart0_printf("\nRead-back XIP flash content (first 10 words) via memory-mapped access...\n"); uint32_t flash_base_addr = XIP_MEM_BASE_ADDRESS + FLASH_BASE; uint32_t *xip_mem = (uint32_t*)flash_base_addr; asm volatile("fence"); uint32_t i; for (i=0; i<10; i++) { neorv32_uart0_printf("[0x%x] 0x%x\n", flash_base_addr + 4*i, xip_mem[i]); } // the flash is READ-ONLY in XIP mode - any write access to the XIP-mapped memory page will raise // a store bus exception / device error (captured by the NEORV32 runtime environment) neorv32_uart0_printf("\nTest write access to XIP memory (will raise an exception)...\n"); *xip_mem = 0; // try to write to the flash using XIP // ---------------------------------------------------------- // Run program from flash // ---------------------------------------------------------- // finally, jump to the XIP flash's base address we have configured to start execution **from there** neorv32_uart0_printf("\nStarting Execute In-Place program (@0x%x)...\n", (uint32_t)(XIP_MEM_BASE_ADDRESS + FLASH_BASE)); asm volatile("fence.i"); asm volatile ("call %[dest]" : : [dest] "i" (XIP_MEM_BASE_ADDRESS + FLASH_BASE)); // this should never be reached neorv32_uart0_printf("Error! Starting XIP program failed!\n"); return 1; } // ============================================================================================================ // Helper functions // ============================================================================================================ /**********************************************************************//** * Erase sector starting at base address. * * @param[in] base_addr Base address of sector to erase. **************************************************************************/ void xip_flash_erase_sector(uint32_t base_addr) { uint32_t tmp = 0; union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } data; // set write-enable latch // 1 byte command data.uint32[0] = 0; data.uint32[1] = SPI_FLASH_CMD_WRITE_ENABLE << 24; // command: set write-enable latch neorv32_xip_spi_trans(1, &data.uint64); // execute sector erase command // 1 byte command, FLASH_ABYTES bytes address tmp = SPI_FLASH_CMD_SECTOR_ERASE << 24; // command: erase sector if (FLASH_ABYTES == 1) { tmp |= (base_addr & 0x000000FF) << 16; } // address if (FLASH_ABYTES == 2) { tmp |= (base_addr & 0x0000FFFF) << 8; } // address if (FLASH_ABYTES == 3) { tmp |= (base_addr & 0x00FFFFFF) << 0; } // address data.uint32[0] = 0; data.uint32[1] = tmp; neorv32_xip_spi_trans(1 + FLASH_ABYTES, &data.uint64); // check status register: WIP bit has to clear while(1) { tmp = SPI_FLASH_CMD_READ_STATUS << 24; // read status register command data.uint32[0] = 0; data.uint32[1] = tmp; neorv32_xip_spi_trans(2, &data.uint64); if ((data.uint32[0] & 0x01) == 0) { // WIP bit cleared? break; } } } /**********************************************************************//** * Helper function to program the XIP flash via the direct SPI access feature of the XIP module. * * @warning This function can only be used BEFORE the XIP-mode is activated! * @note This function is blocking and performs individual writes for each byte (little-endian byte order!). * * @param[in] src Pointer to data that will be copied to flash (32-bit). * @param[in] base_addr Image base address (in flash). * @param[in] size Image size in bytes. * @return Returns 0 if write was successful. **************************************************************************/ void xip_flash_program(uint32_t *src, uint32_t base_addr, uint32_t size) { uint32_t data_byte = 0; uint32_t cnt = 0; uint32_t flash_addr = base_addr; uint32_t tmp = 0; union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } data; while (1) { // get data byte data_byte = src[cnt/4]; data_byte >>= (cnt & 3) * 8; // little-endian byte order! data_byte &= 0x000000FF; // set write-enable latch // 1 byte command data.uint32[0] = 0; data.uint32[1] = SPI_FLASH_CMD_WRITE_ENABLE << 24; // command: set write-enable latch neorv32_xip_spi_trans(1, &data.uint64); // write byte // 1 byte command, FLASH_ABYTES bytes address, 1 byte data data.uint32[1] = SPI_FLASH_CMD_WRITE << 24; // command: byte write data.uint32[0] = 0; if (FLASH_ABYTES == 1) { data.uint32[1] |= (flash_addr & 0x000000FF) << 16; } // address if (FLASH_ABYTES == 2) { data.uint32[1] |= (flash_addr & 0x0000FFFF) << 8; } // address if (FLASH_ABYTES == 3) { data.uint32[1] |= (flash_addr & 0x00FFFFFF) << 0; } // address if (FLASH_ABYTES == 1) { data.uint32[1] |= data_byte << 8; } // data byte if (FLASH_ABYTES == 2) { data.uint32[1] |= data_byte << 0; } // data byte if (FLASH_ABYTES == 3) { data.uint32[0] = data_byte << 24; } // data byte neorv32_xip_spi_trans(2 + FLASH_ABYTES, &data.uint64); flash_addr++; // check status register: WIP bit has to clear while(1) { tmp = SPI_FLASH_CMD_READ_STATUS << 24; // read status register command data.uint32[0] = 0; data.uint32[1] = tmp; neorv32_xip_spi_trans(2, &data.uint64); if ((data.uint32[0] & 0x01) == 0) { // WIP bit cleared? break; } } // done? cnt++; if (cnt == size) { break; } } } /**********************************************************************//** * Get NEORV32 executable via UART. * * @param[in] dst Pointer to uin32_t data array where the executable will be stored. * @param[out] length Pointer to a uin32_t to store the executable size in bytes. * @return Returns 0 on success. **************************************************************************/ int uart_get_executable(uint32_t *dst, uint32_t *length) { // check if valid image uint32_t signature = uart_get_word(); if (signature != EXE_SIGNATURE) { return -1; } // image size and checksum uint32_t size = uart_get_word(); // size in bytes uint32_t check = uart_get_word(); // complement sum checksum *length = size; // transfer program data uint32_t checksum = 0; uint32_t d = 0, i = 0; while (i < (size/4)) { // in words d = uart_get_word(); checksum += d; dst[i++] = d; } // error during transfer? if ((checksum + check) != 0) { return -2; } return 0; } /**********************************************************************//** * Get 32-bit word from UART. * * @return 32-bit data word. **************************************************************************/ uint32_t uart_get_word(void) { union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)]; } data; uint32_t i; for (i=0; i<4; i++) { data.uint8[i] = (uint8_t)neorv32_uart0_getc(); } return data.uint32; }