b RISC-V°

RISC-V Integer Conditional
(Zlcond) operations extension

Dr. Philipp Tomsich (VRULL CmbH)

Version 1.0.1, 2023-10-12: This document is ratified. See http://riscv.org/spec-state for details.



Table of Contents

Preamble
Copyright and license information
Contributors
1. Introduction
1.1. Motivation and use cases
2. Zicond specification
3. Instructions (in alphabetical order)
3.1. czero.eqz
3.2. czero.nez
4. Usage examples

4.1. Instruction sequences

© © 0 g O U b b W N —



Preamble | Page 1

Preamble

This document is in the Ratified state

| ' No changes are allowed. Any desired or needed changes can be the subject of a follow-on
new extension. Ratified extensions are never revised

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V


http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2022-2023 by RISC-V International.

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V


https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

- Dr. Philipp Tomsich <philipp.tomsich@vrull.eu>
- Ken Dockser <kdockser@tenstorrent.com>
- Brendan Sweeney <brs@eecs.berkeley.edu>

- Andrew Waterman <andrew@sifive.com>

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V


mailto:philipp.tomsich@vrull.eu
mailto:kdockser@tenstorrent.com
mailto:brs@eecs.berkeley.edu
mailto:andrew@sifive.com

1.1. Motivation and use cases | Page 4

Chapter 1. Introduction

The Zicond extension defines a simple solution that provides most of the benefit and all of the
flexibility one would desire to support conditional arithmetic and conditional-select/move operations,
while remaining true to the RISC-V design philosophy. The instructions follow the format for R-type
instructions with 3 operands (i.e, 2 source operands and 1 destination operand). Using these
instructions, branchless sequences can be implemented (typically in two-instruction sequences)
without the need for instruction fusion, special provisions during the decoding of architectural
instructions, or other microarchitectural provisions.

1.1. Motivation and use cases

One of the shortcomings of RISC-V, compared to competing instruction set architectures, is the
absence of conditional operations to support branchless code-generation: this includes conditional
arithmetic, conditional select and conditional move operations. The design principles of RISC-V (e.g.
the absence of an instruction-format that supports 3 source registers and an output register) make it
unlikely that direct equivalents of the competing instructions will be introduced.

Yet, low-cost conditional instructions are a desirable feature as they allow the replacement of branches
in a broad range of suitable situations (whether the branch turns out to be unpredictable or
predictable) so as to reduce the capacity and aliasing pressures on BTBs and branch predictors, and to
allow for longer basic blocks (for both the hardware and the compiler to work with).

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V



Chapter 2. Zicond specification | Page 5

Chapter 2. Zicond specification

The "Conditional" operations extension provides a simple solution that provides most of the benefit
and all of the flexibility one would desire to support conditional arithmetic and conditional-
select/move operations, while remaining true to the RISC-V design philosophy. The instructions
follow the format for R-type instructions with 3 operands (i.e., 2 source operands and 1 destination
operand). Using these instructions, branchless sequences can be implemented (typically in two-
instruction sequences) without the need for instruction fusion, special provisions during the decoding
of architectural instructions, or other microarchitectural provisions.

The following instructions comprise the Zicond extension:

RV32 RV64 Mnemonic Instruction
v v\ czero.eqz rd, rsl, rs2 Conditional zero, if condition is equal to zero
4 v czero.nez rd, rsl, rs2 Conditional zero, if condition is nonzero

Architecture Comment: defining additional comparisons, in addition to equal-to-zero and
| yl not-equal-to-zero, does not offer a benefit due to the lack of immediates or an additional
register operand that the comparison takes place against.

Based on these two instructions, synthetic instructions (i.e, short instruction sequences) for the
following conditional arithmetic operations are supported:

. conditional add, if zero

. conditional add, if non-zero

- conditional subtract, if zero

- conditional subtract, if non-zero

- conditional bitwise-and, if zero

- conditional bitwise-and, if non-zero

- conditional bitwise-or, if zero

- conditional bitwise-or, if non-zero

- conditional bitwise-xor, if zero

- conditional bitwise-xor, if non-zero
Additionally, the following conditional select instructions are supported:

- conditional-select, if zero

- conditional-select, if non-zero

More complex conditions, such as comparisons against immediates, registers, single-bit tests,
comparisons against ranges, etc. can be realized by composing these new instructions with existing
instructions.

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V



Chapter 3. Instructions (in alphabetical order) | Page 6

Chapter 3. Instructions (in alphabetical
order)

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V



3.1. czero.eqz | Page 7

3.1. czero.eqz

Synopsis

Moves zero to a register rd, if the condition rs2 is equal to zero, otherwise moves rs1 to rd.

Mnemonic

czero.eqz rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 00 0 1 11 rs2 rsl 1 0 1 rd 0 11 0 0 11
CZERO condition value CZERO.EQZ OoP

Description

If rs2 contains the value zero, this instruction writes the value zero to rd. Otherwise, this instruction
copies the contents of rsI to rd.

This instruction carries a syntactic dependency from both rsI and rs2 to rd. Furthermore, if the Zkt
extension is implemented, this instruction’s timing is independent of the data values in rsI and rs2.

SAIL code

let condition = X(rs2);

result : xlenbits = if (condition == zeros()) then zeros()
else X(rs1);

X(rd) = result;

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V



3.2. czero.nez | Page 8

A.2.czero.nez

Synopsis

Moves zero to a register rd, if the condition rs2 is nonzero, otherwise moves rsI to rd.

Mnemonic

czero.nez rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 00 0 1 11 rs2 rsl 1 11 rd 0 11 0 0 11
CZERO condition value CZERO.NEZ OoP

Description

If rs2 contains a nonzero value, this instruction writes the value zero to rd. Otherwise, this
instruction copies the contents of rsl to rd.

This instruction carries a syntactic dependency from both rsI and rs2 to rd. Furthermore, if the Zkt
extension is implemented, this instruction’s timing is independent of the data values in rsI and rs2.

SAIL code
let condition = X(rs2);
result : xlenbits = if (condition != zeros()) then zeros()

else X(rs1);
X(rd) = result;

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V



4.1. Instruction sequences | Page 9

Chapter 4. Usage examples

The instructions from this extension can be used to construct sequences that perform conditional-
arithmetic, conditional-bitwise-logical, and conditional-select operations.

4. Instruction sequences

Operation Instruction sequence Length
Conditional add, if zero czero.nez rd, rs2, rc
rd = (rc == 0) ? (rs1 + rs2) : rsl add rd, rs1, rd
Conditional add, if non-zero czero.eqz rd, rs2, rc
rd = (rc 1=0) 7 (rs1 + rs2) : rsl add rd, rs1, rd
Conditional subtract, if zero czero.nez rd, rs2, rc
rd = (rc ==0) ? (rs1 - rs2) : rsl sub rd, rs1, rd
Conditional subtract, if non-zero czero.eqz rd, rs2, rc
rd = (rc 1=0) ? (rs1 - rs2) : rsl sub rd, rs1, rd
2 insns

Conditional bitwise-or, if zero czero.nez rd, rs2, rc
rd = (rc == 0) ? (rs1 | rs2) : rs1 or rd, rs1, rd
Conditional bitwise-or, if non-zero czero.eqz rd, rs2, rc
rd = (rc '=0) 2 (rs1 | rs2) : rs1 or rd, rs1, rd
Conditional bitwise-xor, if zero czero.nez rd, rs2, rc
rd = (rc == 0) ? (rs1 A rs2) : rsi XOr rd, rs1, rd
Conditional bitwise-xor, if non-zero czero.eqz rd, rs2, rc
rd = (rc 1=0) ? (rs1 A rs2) : rs xor rd, rs1, rd
Conditional bitwise-and, if zero and rd, rs1, rs2
rd = (rc == 0) ? (rs1 & rs2) : rsl czero.eqz rtmp, rs1, rc

or rd, rd, rtmp
Conditional bitwise-and, if non-zero and rd, rs1, rs2
rd = (rc !1=0) ? (rs1 & rs2) : rs czero.nez rtmp, rs1, rc ‘

or rd, rd, rtmp 3 insns

o : (requires 1

Conditional select, if zero czero.nez rd, rsl1, rc temporary)
rd = (rc ==0) ? rs1 : rs2 czero.eqz rtmp, rs2, rc

or rd, rd, rtmp
Conditional select, if non-zero czero.eqz rd, rs1, rc
rd = (rc '=0) ? rs1 : rs2 czero.nez rtmp, rs2, rc

or rd, rd, rtmp

RISC-V Integer Conditional (Zicond) operations extension | © RISC-V



	RISC-V Integer Conditional (Zicond) operations extension
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. Motivation and use cases

	Chapter 2. Zicond specification
	Chapter 3. Instructions (in alphabetical order)
	3.1. czero.eqz
	3.2. czero.nez

	Chapter 4. Usage examples
	4.1. Instruction sequences


