neorv32/sw/lib/source/neorv32_cpu.c

507 lines
19 KiB
C

// #################################################################################################
// # << NEORV32: neorv32_cpu.c - CPU Core Functions HW Driver >> #
// # ********************************************************************************************* #
// # BSD 3-Clause License #
// # #
// # Copyright (c) 2023, Stephan Nolting. All rights reserved. #
// # #
// # Redistribution and use in source and binary forms, with or without modification, are #
// # permitted provided that the following conditions are met: #
// # #
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
// # conditions and the following disclaimer. #
// # #
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
// # conditions and the following disclaimer in the documentation and/or other materials #
// # provided with the distribution. #
// # #
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
// # endorse or promote products derived from this software without specific prior written #
// # permission. #
// # #
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
// # ********************************************************************************************* #
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
// #################################################################################################
/**********************************************************************//**
* @file neorv32_cpu.c
* @brief CPU Core Functions HW driver source file.
**************************************************************************/
#include "neorv32.h"
#include "neorv32_cpu.h"
/**********************************************************************//**
* Unavailable extensions warning.
**************************************************************************/
#if defined __riscv_d || (__riscv_flen == 64)
#error Double-precision floating-point extension <D/Zdinx> is NOT supported!
#endif
#if (__riscv_xlen > 32)
#error Only 32-bit <rv32> is supported!
#endif
#ifdef __riscv_fdiv
#warning Floating-point division instruction <FDIV> is NOT supported yet!
#endif
#ifdef __riscv_fsqrt
#warning Floating-point square root instruction <FSQRT> is NOT supported yet!
#endif
/**********************************************************************//**
* Enable specific interrupt channel.
* @note This functions also tries to clear the pending flag of the interrupt.
*
* @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum.
**************************************************************************/
void neorv32_cpu_irq_enable(int irq_sel) {
neorv32_cpu_csr_clr(CSR_MIP, 1 << (irq_sel & 0x1f)); // clear pending
neorv32_cpu_csr_set(CSR_MIE, 1 << (irq_sel & 0x1f)); // enable
}
/**********************************************************************//**
* Disable specific interrupt channel.
* @note This functions also tries to clear the pending flag of the interrupt.
*
* @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum.
**************************************************************************/
void neorv32_cpu_irq_disable(int irq_sel) {
neorv32_cpu_csr_clr(CSR_MIE, 1 << (irq_sel & 0x1f)); // disable
neorv32_cpu_csr_clr(CSR_MIP, 1 << (irq_sel & 0x1f)); // clear pending
}
/**********************************************************************//**
* Get cycle counter from cycle[h].
*
* @return Current cycle counter (64 bit).
**************************************************************************/
uint64_t neorv32_cpu_get_cycle(void) {
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
} cycles;
uint32_t tmp1, tmp2, tmp3;
while(1) {
tmp1 = neorv32_cpu_csr_read(CSR_CYCLEH);
tmp2 = neorv32_cpu_csr_read(CSR_CYCLE);
tmp3 = neorv32_cpu_csr_read(CSR_CYCLEH);
if (tmp1 == tmp3) {
break;
}
}
cycles.uint32[0] = tmp2;
cycles.uint32[1] = tmp3;
return cycles.uint64;
}
/**********************************************************************//**
* Set machine cycle counter mcycle[h].
*
* @param[in] value New value for mcycle[h] CSR (64-bit).
**************************************************************************/
void neorv32_cpu_set_mcycle(uint64_t value) {
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
} cycles;
cycles.uint64 = value;
// prevent low-to-high word overflow while writing
neorv32_cpu_csr_write(CSR_MCYCLE, 0);
neorv32_cpu_csr_write(CSR_MCYCLEH, cycles.uint32[1]);
neorv32_cpu_csr_write(CSR_MCYCLE, cycles.uint32[0]);
}
/**********************************************************************//**
* Get retired instructions counter from instret[h].
*
* @return Current instructions counter (64 bit).
**************************************************************************/
uint64_t neorv32_cpu_get_instret(void) {
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
} cycles;
uint32_t tmp1, tmp2, tmp3;
while(1) {
tmp1 = neorv32_cpu_csr_read(CSR_INSTRETH);
tmp2 = neorv32_cpu_csr_read(CSR_INSTRET);
tmp3 = neorv32_cpu_csr_read(CSR_INSTRETH);
if (tmp1 == tmp3) {
break;
}
}
cycles.uint32[0] = tmp2;
cycles.uint32[1] = tmp3;
return cycles.uint64;
}
/**********************************************************************//**
* Set machine retired instructions counter minstret[h].
*
* @param[in] value New value for mcycle[h] CSR (64-bit).
**************************************************************************/
void neorv32_cpu_set_minstret(uint64_t value) {
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)];
} cycles;
cycles.uint64 = value;
// prevent low-to-high word overflow while writing
neorv32_cpu_csr_write(CSR_MINSTRET, 0);
neorv32_cpu_csr_write(CSR_MINSTRETH, cycles.uint32[1]);
neorv32_cpu_csr_write(CSR_MINSTRET, cycles.uint32[0]);
}
/**********************************************************************//**
* Delay function using busy wait.
*
* @note This function uses the cycle CPU counter if available. Otherwise
* the MTIME system timer is used if available. A simple loop is used as
* alternative fall-back (imprecise!).
*
* @param[in] time_ms Time in ms to wait (unsigned 32-bit).
**************************************************************************/
void neorv32_cpu_delay_ms(uint32_t time_ms) {
uint32_t clock = NEORV32_SYSINFO->CLK; // clock ticks per second
clock = clock / 1000; // clock ticks per ms
uint64_t wait_cycles = ((uint64_t)clock) * ((uint64_t)time_ms);
uint64_t tmp = 0;
// use CYCLE CSRs
// -------------------------------------------
if ( (neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_ZICNTR)) && // cycle counter available?
((neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT) & (1<<CSR_MCOUNTINHIBIT_CY)) == 0) ) { // counter is running?
tmp = neorv32_cpu_get_cycle() + wait_cycles;
while (neorv32_cpu_get_cycle() < tmp);
}
// use MTIME machine timer
// -------------------------------------------
else if (NEORV32_SYSINFO->SOC & (1 << SYSINFO_SOC_IO_MTIME)) { // MTIME timer available?
tmp = neorv32_mtime_get_time() + wait_cycles;
while (neorv32_mtime_get_time() < tmp);
}
// simple loop as fall-back (imprecise!)
// -------------------------------------------
else {
const uint32_t loop_cycles_c = 16; // clock cycles per iteration of the ASM loop
uint32_t iterations = (uint32_t)(wait_cycles / loop_cycles_c);
asm volatile (" .balign 4 \n" // make sure this is 32-bit aligned
" __neorv32_cpu_delay_ms_start: \n"
" beq %[cnt_r], zero, __neorv32_cpu_delay_ms_end \n" // 3 cycles (not taken)
" beq %[cnt_r], zero, __neorv32_cpu_delay_ms_end \n" // 3 cycles (never taken)
" addi %[cnt_w], %[cnt_r], -1 \n" // 2 cycles
" nop \n" // 2 cycles
" j __neorv32_cpu_delay_ms_start \n" // 6 cycles
" __neorv32_cpu_delay_ms_end: "
: [cnt_w] "=r" (iterations) : [cnt_r] "r" (iterations));
}
}
/**********************************************************************//**
* Get actual clocking frequency from prescaler select #NEORV32_CLOCK_PRSC_enum
*
* @param[in] prsc Prescaler select #NEORV32_CLOCK_PRSC_enum.
* return Actual _raw_ clock frequency in Hz.
**************************************************************************/
uint32_t neorv32_cpu_get_clk_from_prsc(int prsc) {
if ((prsc < CLK_PRSC_2) || (prsc > CLK_PRSC_4096)) { // out of range?
return 0;
}
uint32_t res = 0;
uint32_t clock = NEORV32_SYSINFO->CLK; // SoC main clock in Hz
switch(prsc & 7) {
case CLK_PRSC_2 : res = clock/2 ; break;
case CLK_PRSC_4 : res = clock/4 ; break;
case CLK_PRSC_8 : res = clock/8 ; break;
case CLK_PRSC_64 : res = clock/64 ; break;
case CLK_PRSC_128 : res = clock/128 ; break;
case CLK_PRSC_1024 : res = clock/1024 ; break;
case CLK_PRSC_2048 : res = clock/2048 ; break;
case CLK_PRSC_4096 : res = clock/4096 ; break;
default: break;
}
return res;
}
/**********************************************************************//**
* Physical memory protection (PMP): Get number of available regions.
*
* @warning This function overrides all available PMPCFG* CSRs!
* @note This function requires the PMP CPU extension.
*
* @return Returns number of available PMP regions.
**************************************************************************/
uint32_t neorv32_cpu_pmp_get_num_regions(void) {
// PMP implemented at all?
if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_PMP)) == 0) {
return 0;
}
// try setting R bit in all PMPCFG CSRs
const uint32_t mask = 0x01010101;
neorv32_cpu_csr_write(CSR_PMPCFG0, mask);
neorv32_cpu_csr_write(CSR_PMPCFG1, mask);
neorv32_cpu_csr_write(CSR_PMPCFG2, mask);
neorv32_cpu_csr_write(CSR_PMPCFG3, mask);
// sum up all written ones (only available PMPCFG* CSRs/entries will return =! 0)
union {
uint32_t uint32;
uint8_t uint8[sizeof(uint32_t)/sizeof(uint8_t)];
} cnt;
cnt.uint32 = 0;
cnt.uint32 += neorv32_cpu_csr_read(CSR_PMPCFG0) & mask;
cnt.uint32 += neorv32_cpu_csr_read(CSR_PMPCFG1) & mask;
cnt.uint32 += neorv32_cpu_csr_read(CSR_PMPCFG2) & mask;
cnt.uint32 += neorv32_cpu_csr_read(CSR_PMPCFG3) & mask;
// sum up bytes
uint32_t num_regions = 0;
num_regions += (uint32_t)cnt.uint8[0];
num_regions += (uint32_t)cnt.uint8[1];
num_regions += (uint32_t)cnt.uint8[2];
num_regions += (uint32_t)cnt.uint8[3];
return num_regions;
}
/**********************************************************************//**
* Physical memory protection (PMP): Get minimal region size (granularity).
*
* @warning This function overrides PMPCFG0[0] and PMPADDR0 CSRs!
* @note This function requires the PMP CPU extension.
*
* @return Returns minimal region size in bytes. Returns zero on error.
**************************************************************************/
uint32_t neorv32_cpu_pmp_get_granularity(void) {
// PMP implemented at all?
if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_PMP)) == 0) {
return 0;
}
neorv32_cpu_csr_write(CSR_PMPCFG0, 0);
neorv32_cpu_csr_write(CSR_PMPADDR0, -1); // try to set all bits
uint32_t tmp = neorv32_cpu_csr_read(CSR_PMPADDR0);
// no bits set at all -> fail
if (tmp == 0) {
return 0;
}
// find first trailing 1
uint32_t i = 2;
while(1) {
if (tmp & 1) {
break;
}
tmp >>= 1;
i++;
}
return 1<<i;
}
/**********************************************************************//**
* Physical memory protection (PMP): Configure region.
*
* @note This function requires the PMP CPU extension.
*
* @warning This function expects a WORD address!
*
* @param[in] index Region number (index, 0..PMP_NUM_REGIONS-1).
* @param[in] addr Region address (word address!).
* @param[in] config Region configuration byte (see #NEORV32_PMPCFG_ATTRIBUTES_enum).
* @return Returns 0 on success, !=0 on failure.
**************************************************************************/
int neorv32_cpu_pmp_configure_region(int index, uint32_t addr, uint8_t config) {
if ((index > 15) || ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_PMP)) == 0)) {
return -1;
}
// set address
switch(index & 0xf) {
case 0: neorv32_cpu_csr_write(CSR_PMPADDR0, addr); break;
case 1: neorv32_cpu_csr_write(CSR_PMPADDR1, addr); break;
case 2: neorv32_cpu_csr_write(CSR_PMPADDR2, addr); break;
case 3: neorv32_cpu_csr_write(CSR_PMPADDR3, addr); break;
case 4: neorv32_cpu_csr_write(CSR_PMPADDR4, addr); break;
case 5: neorv32_cpu_csr_write(CSR_PMPADDR5, addr); break;
case 6: neorv32_cpu_csr_write(CSR_PMPADDR6, addr); break;
case 7: neorv32_cpu_csr_write(CSR_PMPADDR7, addr); break;
case 8: neorv32_cpu_csr_write(CSR_PMPADDR8, addr); break;
case 9: neorv32_cpu_csr_write(CSR_PMPADDR9, addr); break;
case 10: neorv32_cpu_csr_write(CSR_PMPADDR10, addr); break;
case 11: neorv32_cpu_csr_write(CSR_PMPADDR11, addr); break;
case 12: neorv32_cpu_csr_write(CSR_PMPADDR12, addr); break;
case 13: neorv32_cpu_csr_write(CSR_PMPADDR13, addr); break;
case 14: neorv32_cpu_csr_write(CSR_PMPADDR14, addr); break;
case 15: neorv32_cpu_csr_write(CSR_PMPADDR15, addr); break;
default: break;
}
// set configuration
uint32_t clr_mask = 0xff;
uint32_t set_mask = (uint32_t)config;
clr_mask <<= 8*(index & 3);
set_mask <<= 8*(index & 3);
switch ((index >> 2) & 3) {
case 0: neorv32_cpu_csr_clr(CSR_PMPCFG0, clr_mask); neorv32_cpu_csr_set(CSR_PMPCFG0, set_mask); break;
case 1: neorv32_cpu_csr_clr(CSR_PMPCFG1, clr_mask); neorv32_cpu_csr_set(CSR_PMPCFG1, set_mask); break;
case 2: neorv32_cpu_csr_clr(CSR_PMPCFG2, clr_mask); neorv32_cpu_csr_set(CSR_PMPCFG2, set_mask); break;
case 3: neorv32_cpu_csr_clr(CSR_PMPCFG3, clr_mask); neorv32_cpu_csr_set(CSR_PMPCFG3, set_mask); break;
default: break;
}
return 0;
}
/**********************************************************************//**
* Hardware performance monitors (HPM): Get number of available HPM counters.
*
* @return Returns number of available HPM counters.
**************************************************************************/
uint32_t neorv32_cpu_hpm_get_num_counters(void) {
// HPMs implemented at all?
if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_ZIHPM)) == 0) {
return 0;
}
// backup
uint32_t mcountinhibit_tmp = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT);
// try to set all HPM bits
neorv32_cpu_csr_set(CSR_MCOUNTINHIBIT, 0xfffffff8U);
// count actually set bits
uint32_t cnt = 0;
uint32_t tmp = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT) >> 3; // remove IR, TM and CY
while (tmp) {
cnt++;
tmp >>= 1;
}
// restore
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, mcountinhibit_tmp);
return cnt;
}
/**********************************************************************//**
* Hardware performance monitors (HPM): Get total counter width
*
* @warning This function overrides the mhpmcounter3[h] CSRs.
*
* @return Size of HPM counters (1-64, 0 if not implemented at all).
**************************************************************************/
uint32_t neorv32_cpu_hpm_get_size(void) {
uint32_t tmp, cnt;
// HPMs implemented at all?
if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_ZIHPM)) == 0) {
return 0;
}
// inhibit auto-update of HPM counter3
neorv32_cpu_csr_set(CSR_MCOUNTINHIBIT, 1 << CSR_MCOUNTINHIBIT_HPM3);
// try to set all 64 counter bits
neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, -1);
neorv32_cpu_csr_write(CSR_MHPMCOUNTER3H, -1);
// count actually set bits
cnt = 0;
tmp = neorv32_cpu_csr_read(CSR_MHPMCOUNTER3);
while (tmp) {
cnt++;
tmp >>= 1;
}
tmp = neorv32_cpu_csr_read(CSR_MHPMCOUNTER3H);
while (tmp) {
cnt++;
tmp >>= 1;
}
return cnt;
}
/**********************************************************************//**
* Switch from privilege mode MACHINE to privilege mode USER.
**************************************************************************/
void __attribute__((naked,noinline)) neorv32_cpu_goto_user_mode(void) {
asm volatile (
"csrw mepc, ra \n" // move return address to mepc so we can return using "mret". also, we can now use ra as temp register
"li ra, 3<<11 \n" // bit mask to clear the two MPP bits
"csrc mstatus, ra \n" // clear MPP bits -> MPP = u-mode
"csrr ra, mstatus \n" // get mstatus
"andi ra, ra, 1<<3 \n" // isolate MIE bit
"slli ra, ra, 4 \n" // shift to MPIE position
"csrs mstatus, ra \n" // set MPIE if MIE is set
"mret \n" // return and switch to user mode
);
}