neorv32/rtl/core/neorv32_twi.vhd

396 lines
18 KiB
VHDL

-- #################################################################################################
-- # << NEORV32 - Two-Wire Interface Controller (TWI) >> #
-- # ********************************************************************************************* #
-- # Supports START and STOP conditions, 8 bit data + ACK/NACK transfers and clock stretching. #
-- # Supports ACKs by the controller. 8 clock pre-scalers + 4-bit clock divider for bus clock #
-- # configuration. No multi-controller support and no peripheral mode support yet. #
-- # Interrupt: "transmission done" #
-- # ********************************************************************************************* #
-- # BSD 3-Clause License #
-- # #
-- # The NEORV32 RISC-V Processor, https://github.com/stnolting/neorv32 #
-- # Copyright (c) 2024, Stephan Nolting. All rights reserved. #
-- # #
-- # Redistribution and use in source and binary forms, with or without modification, are #
-- # permitted provided that the following conditions are met: #
-- # #
-- # 1. Redistributions of source code must retain the above copyright notice, this list of #
-- # conditions and the following disclaimer. #
-- # #
-- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
-- # conditions and the following disclaimer in the documentation and/or other materials #
-- # provided with the distribution. #
-- # #
-- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
-- # endorse or promote products derived from this software without specific prior written #
-- # permission. #
-- # #
-- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
-- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
-- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
-- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
-- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
-- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
-- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
-- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
-- # OF THE POSSIBILITY OF SUCH DAMAGE. #
-- #################################################################################################
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library neorv32;
use neorv32.neorv32_package.all;
entity neorv32_twi is
port (
clk_i : in std_ulogic; -- global clock line
rstn_i : in std_ulogic; -- global reset line, low-active, async
bus_req_i : in bus_req_t; -- bus request
bus_rsp_o : out bus_rsp_t; -- bus response
clkgen_en_o : out std_ulogic; -- enable clock generator
clkgen_i : in std_ulogic_vector(7 downto 0);
twi_sda_i : in std_ulogic; -- serial data line input
twi_sda_o : out std_ulogic; -- serial data line output
twi_scl_i : in std_ulogic; -- serial clock line input
twi_scl_o : out std_ulogic; -- serial clock line output
irq_o : out std_ulogic -- transfer done IRQ
);
end neorv32_twi;
architecture neorv32_twi_rtl of neorv32_twi is
-- control register --
constant ctrl_en_c : natural := 0; -- r/w: TWI enable
constant ctrl_start_c : natural := 1; -- -/w: Generate START condition
constant ctrl_stop_c : natural := 2; -- -/w: Generate STOP condition
constant ctrl_mack_c : natural := 3; -- r/w: generate ACK by controller for transmission
constant ctrl_csen_c : natural := 4; -- r/w: allow clock stretching when set
constant ctrl_prsc0_c : natural := 5; -- r/w: CLK prsc bit 0
constant ctrl_prsc1_c : natural := 6; -- r/w: CLK prsc bit 1
constant ctrl_prsc2_c : natural := 7; -- r/w: CLK prsc bit 2
constant ctrl_cdiv0_c : natural := 8; -- r/w: clock divider bit 0
constant ctrl_cdiv1_c : natural := 9; -- r/w: clock divider bit 1
constant ctrl_cdiv2_c : natural := 10; -- r/w: clock divider bit 2
constant ctrl_cdiv3_c : natural := 11; -- r/w: clock divider bit 3
--
constant ctrl_claimed_c : natural := 29; -- r/-: Set if bus is still claimed
constant ctrl_ack_c : natural := 30; -- r/-: Set if ACK received
constant ctrl_busy_c : natural := 31; -- r/-: Set if TWI unit is busy
-- control register --
type ctrl_t is record
enable : std_ulogic;
mack : std_ulogic;
csen : std_ulogic;
prsc : std_ulogic_vector(2 downto 0);
cdiv : std_ulogic_vector(3 downto 0);
end record;
signal ctrl : ctrl_t;
-- operation triggers --
signal trig_start : std_ulogic;
signal trig_stop : std_ulogic;
signal trig_data : std_ulogic;
-- clock generator --
type clk_gen_t is record
cnt : std_ulogic_vector(3 downto 0); -- clock divider
tick : std_ulogic; -- actual TWI "clock"
phase_gen : std_ulogic_vector(3 downto 0); -- clock phase generator
phase_gen_ff : std_ulogic_vector(3 downto 0);
phase : std_ulogic_vector(3 downto 0);
halt : std_ulogic; -- active clock stretching
end record;
signal clk_gen : clk_gen_t;
-- arbiter --
type arbiter_t is record
state : std_ulogic_vector(2 downto 0);
state_nxt : std_ulogic_vector(1 downto 0);
bitcnt : std_ulogic_vector(3 downto 0);
rtx_sreg : std_ulogic_vector(8 downto 0); -- main rx/tx shift reg
rtx_done : std_ulogic; -- transmission done
busy : std_ulogic;
claimed : std_ulogic; -- bus is currently claimed by _this_ controller
end record;
signal arbiter : arbiter_t;
-- tri-state I/O control --
type io_con_t is record
sda_in_ff : std_ulogic_vector(1 downto 0); -- SDA input sync
scl_in_ff : std_ulogic_vector(1 downto 0); -- SCL input sync
sda_in : std_ulogic;
scl_in : std_ulogic;
sda_out : std_ulogic;
scl_out : std_ulogic;
end record;
signal io_con : io_con_t;
begin
-- Bus Access -----------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
bus_access: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
bus_rsp_o.ack <= '0';
bus_rsp_o.err <= '0';
bus_rsp_o.data <= (others => '0');
ctrl.enable <= '0';
ctrl.mack <= '0';
ctrl.csen <= '0';
ctrl.prsc <= (others => '0');
ctrl.cdiv <= (others => '0');
trig_start <= '0';
trig_stop <= '0';
trig_data <= '0';
elsif rising_edge(clk_i) then
-- bus handshake --
bus_rsp_o.ack <= bus_req_i.stb;
bus_rsp_o.err <= '0';
bus_rsp_o.data <= (others => '0');
-- defaults --
trig_start <= '0';
trig_stop <= '0';
trig_data <= '0';
if (bus_req_i.stb = '1') then
-- write access --
if (bus_req_i.rw = '1') then
if (bus_req_i.addr(2) = '0') then -- control register
ctrl.enable <= bus_req_i.data(ctrl_en_c);
ctrl.mack <= bus_req_i.data(ctrl_mack_c);
ctrl.csen <= bus_req_i.data(ctrl_csen_c);
ctrl.prsc <= bus_req_i.data(ctrl_prsc2_c downto ctrl_prsc0_c);
ctrl.cdiv <= bus_req_i.data(ctrl_cdiv3_c downto ctrl_cdiv0_c);
trig_start <= bus_req_i.data(ctrl_start_c); -- issue START condition
trig_stop <= bus_req_i.data(ctrl_stop_c); -- issue STOP condition
else -- data register
trig_data <= '1'; -- start data transmission
end if;
-- read access --
else
if (bus_req_i.addr(2) = '0') then -- control register
bus_rsp_o.data(ctrl_en_c) <= ctrl.enable;
bus_rsp_o.data(ctrl_mack_c) <= ctrl.mack;
bus_rsp_o.data(ctrl_csen_c) <= ctrl.csen;
bus_rsp_o.data(ctrl_prsc2_c downto ctrl_prsc0_c) <= ctrl.prsc;
bus_rsp_o.data(ctrl_cdiv3_c downto ctrl_cdiv0_c) <= ctrl.cdiv;
--
bus_rsp_o.data(ctrl_claimed_c) <= arbiter.claimed;
bus_rsp_o.data(ctrl_ack_c) <= not arbiter.rtx_sreg(0);
bus_rsp_o.data(ctrl_busy_c) <= arbiter.busy;
else -- data register
bus_rsp_o.data(7 downto 0) <= arbiter.rtx_sreg(8 downto 1);
end if;
end if;
end if;
end if;
end process bus_access;
-- Clock Generation -----------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
clock_generator: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
clk_gen.tick <= '0';
clk_gen.cnt <= (others => '0');
elsif rising_edge(clk_i) then
if (ctrl.enable = '0') then -- reset/disabled
clk_gen.tick <= '0';
clk_gen.cnt <= (others => '0');
else
clk_gen.tick <= '0'; -- default
if (clkgen_i(to_integer(unsigned(ctrl.prsc))) = '1') then -- pre-scaled clock
if (clk_gen.cnt = ctrl.cdiv) then -- clock divider for fine-tuning
clk_gen.tick <= '1';
clk_gen.cnt <= (others => '0');
else
clk_gen.cnt <= std_ulogic_vector(unsigned(clk_gen.cnt) + 1);
end if;
end if;
end if;
end if;
end process clock_generator;
-- clock generator enable --
clkgen_en_o <= ctrl.enable;
-- generate four non-overlapping clock phases --
phase_generator: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
clk_gen.phase_gen <= (others => '0');
clk_gen.phase_gen_ff <= (others => '0');
elsif rising_edge(clk_i) then
clk_gen.phase_gen_ff <= clk_gen.phase_gen;
if (arbiter.state(2) = '0') or (arbiter.state(1 downto 0) = "00") then -- offline or idle
clk_gen.phase_gen <= "0001"; -- make sure to start with a new phase
else
if (clk_gen.tick = '1') and (clk_gen.halt = '0') then -- clock tick and no clock stretching detected
clk_gen.phase_gen <= clk_gen.phase_gen(2 downto 0) & clk_gen.phase_gen(3); -- rotate left
end if;
end if;
end if;
end process phase_generator;
-- TWI bus signals are set/sampled using 4 clock phases --
clk_gen.phase(0) <= clk_gen.phase_gen_ff(0) and (not clk_gen.phase_gen(0)); -- first step
clk_gen.phase(1) <= clk_gen.phase_gen_ff(1) and (not clk_gen.phase_gen(1));
clk_gen.phase(2) <= clk_gen.phase_gen_ff(2) and (not clk_gen.phase_gen(2));
clk_gen.phase(3) <= clk_gen.phase_gen_ff(3) and (not clk_gen.phase_gen(3)); -- last step
-- Clock Stretching Detector --
-- controller wants to pull SCL high, but SCL is pulled low by peripheral --
clk_gen.halt <= '1' when (io_con.scl_out = '1') and (io_con.scl_in_ff(1) = '0') and (ctrl.csen = '1') else '0';
-- TWI Transceiver ------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
twi_engine: process(rstn_i, clk_i)
begin
if (rstn_i = '0') then
io_con.sda_in_ff <= (others => '0');
io_con.scl_in_ff <= (others => '0');
io_con.sda_out <= '0';
io_con.scl_out <= '0';
irq_o <= '0';
arbiter.state <= (others => '0');
arbiter.bitcnt <= (others => '0');
arbiter.state_nxt <= (others => '0');
arbiter.rtx_sreg <= (others => '0');
elsif rising_edge(clk_i) then
-- input synchronizer --
io_con.sda_in_ff <= io_con.sda_in_ff(0) & io_con.sda_in;
io_con.scl_in_ff <= io_con.scl_in_ff(0) & io_con.scl_in;
-- interrupt --
if (arbiter.state = "111") and (arbiter.rtx_done = '1') then -- transmission done
irq_o <= '1';
else
irq_o <= '0';
end if;
-- serial engine --
arbiter.state(2) <= ctrl.enable; -- module enabled?
case arbiter.state is
when "100" => -- IDLE: waiting for operation requests
-- ------------------------------------------------------------
arbiter.bitcnt <= (others => '0');
if (trig_start = '1') then -- issue START condition
arbiter.state_nxt <= "01";
elsif (trig_stop = '1') then -- issue STOP condition
arbiter.state_nxt <= "10";
elsif (trig_data = '1') then -- start a data transmission
-- one bit extra for ACK: issued by controller if ctrl_mack_c is set,
-- sampled from peripheral if ctrl_mack_c is cleared
-- data_i will stay unchanged for min. 1 cycle after WREN has returned to low again
arbiter.rtx_sreg <= bus_req_i.data(7 downto 0) & (not ctrl.mack);
arbiter.state_nxt <= "11";
end if;
-- start operation on next TWI clock pulse --
if (arbiter.state_nxt /= "00") and (clk_gen.tick = '1') then
arbiter.state(1 downto 0) <= arbiter.state_nxt;
end if;
when "101" => -- START: generate (repeated) START condition
-- ------------------------------------------------------------
arbiter.state_nxt <= "00"; -- no operation pending anymore
if (clk_gen.phase(0) = '1') then
io_con.sda_out <= '1';
elsif (clk_gen.phase(1) = '1') then
io_con.sda_out <= '0';
end if;
--
if (clk_gen.phase(0) = '1') then
io_con.scl_out <= '1';
elsif (clk_gen.phase(3) = '1') then
io_con.scl_out <= '0';
arbiter.state(1 downto 0) <= "00"; -- go back to IDLE
end if;
when "110" => -- STOP: generate STOP condition
-- ------------------------------------------------------------
arbiter.state_nxt <= "00"; -- no operation pending anymore
if (clk_gen.phase(0) = '1') then
io_con.sda_out <= '0';
elsif (clk_gen.phase(3) = '1') then
io_con.sda_out <= '1';
arbiter.state(1 downto 0) <= "00"; -- go back to IDLE
end if;
--
if (clk_gen.phase(0) = '1') then
io_con.scl_out <= '0';
elsif (clk_gen.phase(1) = '1') then
io_con.scl_out <= '1';
end if;
when "111" => -- TRANSMISSION: send/receive byte + ACK/NACK/MACK
-- ------------------------------------------------------------
arbiter.state_nxt <= "00"; -- no operation pending anymore
-- SCL clocking --
if (clk_gen.phase(0) = '1') or (clk_gen.phase(3) = '1') then
io_con.scl_out <= '0'; -- set SCL low after transmission to keep bus claimed
elsif (clk_gen.phase(1) = '1') then -- first half + second half of valid data strobe
io_con.scl_out <= '1';
end if;
-- SDA output --
if (arbiter.rtx_done = '1') then
io_con.sda_out <= '0'; -- set SDA low after transmission to keep bus claimed
elsif (clk_gen.phase(0) = '1') then
io_con.sda_out <= arbiter.rtx_sreg(8); -- MSB first
end if;
-- SDA input --
if (clk_gen.phase(2) = '1') then
arbiter.rtx_sreg <= arbiter.rtx_sreg(7 downto 0) & io_con.sda_in_ff(1); -- sample SDA input and shift left
end if;
-- bit counter --
if (clk_gen.phase(3) = '1') then
arbiter.bitcnt <= std_ulogic_vector(unsigned(arbiter.bitcnt) + 1);
end if;
-- transmission done --
if (arbiter.rtx_done = '1') then
arbiter.state(1 downto 0) <= "00"; -- go back to IDLE
end if;
when others => -- "0--" OFFLINE: TWI deactivated, bus unclaimed
-- ------------------------------------------------------------
io_con.scl_out <= '1'; -- SCL driven by pull-up resistor
io_con.sda_out <= '1'; -- SDA driven by pull-up resistor
arbiter.rtx_sreg <= (others => '0'); -- make DATA and ACK _defined_ after reset
arbiter.state_nxt <= "00"; -- no operation pending anymore
arbiter.state(1 downto 0) <= "00"; -- stay here, go to IDLE when activated
end case;
end if;
end process twi_engine;
-- transmit 8 data bits + 1 ACK bit and wait for another clock phase --
arbiter.rtx_done <= '1' when (arbiter.bitcnt = "1001") and (clk_gen.phase(0) = '1') else '0';
-- arbiter busy? --
arbiter.busy <= arbiter.state(1) or arbiter.state(0) or -- operation in progress
arbiter.state_nxt(1) or arbiter.state_nxt(0); -- pending operation
-- check if the TWI bus is currently claimed (by this module or any other controller) --
arbiter.claimed <= '1' when (arbiter.busy = '1') or ((io_con.sda_in_ff(1) = '0') and (io_con.scl_in_ff(1) = '0')) else '0';
-- Tri-State Driver Interface -------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
twi_sda_o <= io_con.sda_out; -- NOTE: signal lines can only be actively driven low
twi_scl_o <= io_con.scl_out;
io_con.sda_in <= to_stdulogic(to_bit(twi_sda_i)); -- "to_bit" to avoid hardware-vs-simulation mismatch
io_con.scl_in <= to_stdulogic(to_bit(twi_scl_i)); -- "to_bit" to avoid hardware-vs-simulation mismatch
end neorv32_twi_rtl;