neorv32/sw/bootloader/bootloader.c

989 lines
30 KiB
C

// #################################################################################################
// # << NEORV32 - Bootloader >> #
// # ********************************************************************************************* #
// # BSD 3-Clause License #
// # #
// # Copyright (c) 2024, Stephan Nolting. All rights reserved. #
// # #
// # Redistribution and use in source and binary forms, with or without modification, are #
// # permitted provided that the following conditions are met: #
// # #
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
// # conditions and the following disclaimer. #
// # #
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
// # conditions and the following disclaimer in the documentation and/or other materials #
// # provided with the distribution. #
// # #
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
// # endorse or promote products derived from this software without specific prior written #
// # permission. #
// # #
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
// # ********************************************************************************************* #
// # The NEORV32 RISC-V Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
// #################################################################################################
/**********************************************************************//**
* @file bootloader.c
* @author Stephan Nolting
* @brief Default NEORV32 bootloader.
**************************************************************************/
#include <stdint.h>
#include <neorv32.h>
/**********************************************************************//**
* @name Bootloader configuration (override via console to customize)
* default values are used if not explicitly customized
**************************************************************************/
/**@{*/
/* -------- Memory layout -------- */
/** Memory base address for the executable */
#ifndef EXE_BASE_ADDR
#define EXE_BASE_ADDR 0x00000000UL
#endif
/* -------- UART interface -------- */
/** Set to 0 to disable UART interface */
#ifndef UART_EN
#define UART_EN 1
#endif
/** UART BAUD rate for serial interface */
#ifndef UART_BAUD
#define UART_BAUD 19200
#endif
/** Set to 1 to enable UART HW handshaking */
#ifndef UART_HW_HANDSHAKE_EN
#define UART_HW_HANDSHAKE_EN 0
#endif
/* -------- Status LED -------- */
/** Set to 0 to disable bootloader status LED (heart beat) at GPIO.gpio_o(STATUS_LED_PIN) */
#ifndef STATUS_LED_EN
#define STATUS_LED_EN 1
#endif
/** GPIO output pin for high-active bootloader status LED (heart beat) */
#ifndef STATUS_LED_PIN
#define STATUS_LED_PIN 0
#endif
/* -------- Auto-boot configuration -------- */
/** Time until the auto-boot sequence starts (in seconds); 0 = disabled */
#ifndef AUTO_BOOT_TIMEOUT
#define AUTO_BOOT_TIMEOUT 8
#endif
/* -------- SPI configuration -------- */
/** Enable SPI (default) including SPI flash boot options */
#ifndef SPI_EN
#define SPI_EN 1
#endif
/** SPI flash chip select (low-active) at SPI.spi_csn_o(SPI_FLASH_CS) */
#ifndef SPI_FLASH_CS
#define SPI_FLASH_CS 0
#endif
/** SPI flash address width (in numbers of bytes; 2,3,4) */
#ifndef SPI_FLASH_ADDR_BYTES
#define SPI_FLASH_ADDR_BYTES 3 // default = 3 address bytes = 24-bit
#endif
/** SPI flash sector size in bytes */
#ifndef SPI_FLASH_SECTOR_SIZE
#define SPI_FLASH_SECTOR_SIZE 65536 // default = 64kB
#endif
/** SPI flash clock pre-scaler; see #NEORV32_SPI_CTRL_enum */
#ifndef SPI_FLASH_CLK_PRSC
#define SPI_FLASH_CLK_PRSC CLK_PRSC_8
#endif
/** SPI flash boot base address */
#ifndef SPI_BOOT_BASE_ADDR
#define SPI_BOOT_BASE_ADDR 0x00400000UL
#endif
/* -------- XIP configuration -------- */
/** Enable XIP boot options */
#ifndef XIP_EN
#define XIP_EN 1
#endif
/**@}*/
/**********************************************************************//**
Executable stream source select (for copying into IMEM)
**************************************************************************/
enum EXE_STREAM_SOURCE_enum {
EXE_STREAM_UART = 0, /**< Get executable via UART */
EXE_STREAM_FLASH = 1 /**< Get executable via SPI flash */
};
/**********************************************************************//**
* Error codes
**************************************************************************/
enum ERROR_CODES_enum {
ERROR_SIGNATURE = 0, /**< 0: Wrong signature in executable */
ERROR_SIZE = 1, /**< 1: Insufficient instruction memory capacity */
ERROR_CHECKSUM = 2, /**< 2: Checksum error in executable */
ERROR_FLASH = 3 /**< 3: SPI flash access error */
};
/**********************************************************************//**
* Error messages
**************************************************************************/
const char error_message[4][5] = {
"EXE",
"SIZE",
"CHKS",
"FLSH"
};
/**********************************************************************//**
* SPI flash commands
**************************************************************************/
enum SPI_FLASH_CMD_enum {
SPI_FLASH_CMD_PAGE_PROGRAM = 0x02, /**< Program page */
SPI_FLASH_CMD_READ = 0x03, /**< Read data */
SPI_FLASH_CMD_WRITE_DISABLE = 0x04, /**< Disallow write access */
SPI_FLASH_CMD_READ_STATUS = 0x05, /**< Get status register */
SPI_FLASH_CMD_WRITE_ENABLE = 0x06, /**< Allow write access */
SPI_FLASH_CMD_WAKE = 0xAB, /**< Wake up from sleep mode */
SPI_FLASH_CMD_SECTOR_ERASE = 0xD8 /**< Erase complete sector */
};
/**********************************************************************//**
* SPI flash status register bits
**************************************************************************/
enum SPI_FLASH_SREG_enum {
FLASH_SREG_BUSY = 0, /**< Busy, write/erase in progress when set, read-only */
FLASH_SREG_WEL = 1 /**< Write access enabled when set, read-only */
};
/**********************************************************************//**
* NEORV32 executable
**************************************************************************/
enum NEORV32_EXECUTABLE_enum {
EXE_OFFSET_SIGNATURE = 0, /**< Offset in bytes from start to signature (32-bit) */
EXE_OFFSET_SIZE = 4, /**< Offset in bytes from start to size (32-bit) */
EXE_OFFSET_CHECKSUM = 8, /**< Offset in bytes from start to checksum (32-bit) */
EXE_OFFSET_DATA = 12, /**< Offset in bytes from start to data (32-bit) */
};
/**********************************************************************//**
* Valid executable identification signature
**************************************************************************/
#define EXE_SIGNATURE 0x4788CAFE
/**********************************************************************//**
* Helper macros
**************************************************************************/
/**@{*/
/** Actual define-to-string helper */
#define xstr(a) str(a)
/** Internal helper macro */
#define str(a) #a
/** Print to UART 0 */
#if (UART_EN != 0)
#define PRINT_TEXT(...) neorv32_uart0_puts(__VA_ARGS__)
#define PRINT_XNUM(a) print_hex_word(a)
#define PRINT_GETC(a) neorv32_uart0_getc()
#define PRINT_PUTC(a) neorv32_uart0_putc(a)
#else
#define PRINT_TEXT(...)
#define PRINT_XNUM(a)
#define PRINT_GETC(a) 0
#define PRINT_PUTC(a)
#endif
/**@}*/
/**********************************************************************//**
* This global variable keeps the size of the available executable in bytes.
* If =0 no executable is available (yet).
**************************************************************************/
volatile uint32_t exe_available;
/**********************************************************************//**
* Only set during executable fetch (required for capturing STORE BUS-TIMOUT exception).
**************************************************************************/
volatile uint32_t getting_exe;
/**********************************************************************//**
* Function prototypes
**************************************************************************/
void __attribute__((interrupt("machine"))) bootloader_trap_handler(void);
void print_help(void);
void start_app(int boot_xip);
void get_exe(int src);
void save_exe(void);
uint32_t get_exe_word(int src, uint32_t addr);
void system_error(uint8_t err_code);
void print_hex_word(uint32_t num);
// SPI flash driver functions
void spi_flash_wakeup(void);
int spi_flash_check(void);
uint8_t spi_flash_read_byte(uint32_t addr);
void spi_flash_write_byte(uint32_t addr, uint8_t wdata);
void spi_flash_write_word(uint32_t addr, uint32_t wdata);
void spi_flash_erase_sector(uint32_t addr);
void spi_flash_write_enable(void);
void spi_flash_write_disable(void);
uint8_t spi_flash_read_status(void);
void spi_flash_write_addr(uint32_t addr);
/**********************************************************************//**
* Sanity check: Base RV32I ISA only!
**************************************************************************/
#if defined __riscv_atomic || defined __riscv_a || __riscv_b || __riscv_compressed || defined __riscv_c || defined __riscv_mul || defined __riscv_m
#warning In order to allow the bootloader to run on *any* CPU configuration it should be compiled using the base rv32i ISA only.
#endif
/**********************************************************************//**
* Bootloader main.
**************************************************************************/
int main(void) {
exe_available = 0; // global variable for executable size; 0 means there is no exe available
getting_exe = 0; // we are not trying to get an executable yet
// configure trap handler (bare-metal, no neorv32 rte available)
neorv32_cpu_csr_write(CSR_MTVEC, (uint32_t)(&bootloader_trap_handler));
#if (SPI_EN != 0)
// setup SPI for clock-mode 0
if (neorv32_spi_available()) {
neorv32_spi_setup(SPI_FLASH_CLK_PRSC, 0, 0, 0, 0);
}
#endif
#if (XIP_EN != 0)
// setup XIP: clock divider 0, clock mode 0
if (neorv32_xip_available()) {
neorv32_xip_setup(SPI_FLASH_CLK_PRSC, 0, 0, 0, SPI_FLASH_CMD_READ);
neorv32_xip_start(SPI_FLASH_ADDR_BYTES);
}
#endif
#if (STATUS_LED_EN != 0)
// activate status LED, clear all others
if (neorv32_gpio_available()) {
neorv32_gpio_port_set(1 << STATUS_LED_PIN);
}
#endif
#if (UART_EN != 0)
// setup UART0
neorv32_uart0_setup(UART_BAUD, 0);
#if (UART_HW_HANDSHAKE_EN != 0)
neorv32_uart0_rtscts_enable();
#endif
#endif
// Configure machine system timer interrupt
if (neorv32_mtime_available()) {
NEORV32_MTIME->TIME_LO = 0;
NEORV32_MTIME->TIME_HI = 0;
NEORV32_MTIME->TIMECMP_LO = NEORV32_SYSINFO->CLK/4;
NEORV32_MTIME->TIMECMP_HI = 0;
neorv32_cpu_csr_write(CSR_MIE, 1 << CSR_MIE_MTIE); // activate MTIME IRQ source
neorv32_cpu_csr_set(CSR_MSTATUS, 1 << CSR_MSTATUS_MIE); // enable machine-mode interrupts
}
// ------------------------------------------------
// Show bootloader intro and system info
// ------------------------------------------------
PRINT_TEXT("\n\n\n<< NEORV32 Bootloader >>\n\n"
"BLDV: "__DATE__"\nHWV: ");
PRINT_XNUM(neorv32_cpu_csr_read(CSR_MIMPID));
PRINT_TEXT("\nCLK: ");
PRINT_XNUM(NEORV32_SYSINFO->CLK);
PRINT_TEXT("\nMISA: ");
PRINT_XNUM(neorv32_cpu_csr_read(CSR_MISA));
PRINT_TEXT("\nXISA: ");
PRINT_XNUM(neorv32_cpu_csr_read(CSR_MXISA));
PRINT_TEXT("\nSOC: ");
PRINT_XNUM(NEORV32_SYSINFO->SOC);
PRINT_TEXT("\nIMEM: ");
PRINT_XNUM((uint32_t)(1 << NEORV32_SYSINFO->MEM[SYSINFO_MEM_IMEM]) & 0xFFFFFFFCUL);
PRINT_TEXT("\nDMEM: ");
PRINT_XNUM((uint32_t)(1 << NEORV32_SYSINFO->MEM[SYSINFO_MEM_DMEM]) & 0xFFFFFFFCUL);
PRINT_TEXT("\n");
// ------------------------------------------------
// Auto boot sequence
// ------------------------------------------------
#if (SPI_EN != 0)
#if (AUTO_BOOT_TIMEOUT != 0)
if (neorv32_mtime_available()) {
PRINT_TEXT("\nAutoboot in "xstr(AUTO_BOOT_TIMEOUT)"s. Press any key to abort.\n");
uint64_t timeout_time = neorv32_mtime_get_time() + (uint64_t)(AUTO_BOOT_TIMEOUT * NEORV32_SYSINFO->CLK);
while(1){
if (neorv32_uart0_available()) { // wait for any key to be pressed
if (neorv32_uart0_char_received()) {
neorv32_uart0_char_received_get(); // discard received char
break;
}
}
if (neorv32_mtime_get_time() >= timeout_time) { // timeout? start auto boot sequence
get_exe(EXE_STREAM_FLASH); // try booting from flash
PRINT_TEXT("\n");
start_app(0);
while(1);
}
}
PRINT_TEXT("Aborted.\n\n");
}
#else
PRINT_TEXT("Aborted.\n\n");
#endif
#else
PRINT_TEXT("\n\n");
#endif
print_help();
// ------------------------------------------------
// Bootloader console
// ------------------------------------------------
while (1) {
PRINT_TEXT("\nCMD:> ");
char c = PRINT_GETC();
PRINT_PUTC(c); // echo
PRINT_TEXT("\n");
if (c == 'r') { // restart bootloader
asm volatile ("li t0, %[input_i]; jr t0" : : [input_i] "i" (BOOTLOADER_BASE_ADDRESS)); // jump to beginning of boot ROM
__builtin_unreachable();
}
else if (c == 'h') { // help menu
print_help();
}
else if (c == 'u') { // get executable via UART
get_exe(EXE_STREAM_UART);
}
#if (SPI_EN != 0)
else if (c == 's') { // program flash from memory (IMEM)
save_exe();
}
else if (c == 'l') { // copy executable from flash
get_exe(EXE_STREAM_FLASH);
}
#endif
else if (c == 'e') { // start application program from IMEM
if (exe_available == 0) { // executable available?
PRINT_TEXT("No executable.");
}
else {
start_app(0); // run app from IMEM
}
}
#if (XIP_EN != 0)
else if (c == 'x') { // boot from SPI flash via XIP
if (neorv32_xip_available()) { // XIP module really implemented?
start_app(1);
}
else {
PRINT_TEXT("Invalid CMD");
}
}
#endif
else if (c == '?') {
PRINT_TEXT("by Stephan Nolting\ngithub.com/stnolting/neorv32");
}
else { // unknown command
PRINT_TEXT("Invalid CMD");
}
} // while(1)
return 0; // bootloader should never return
}
/**********************************************************************//**
* Print help menu.
**************************************************************************/
void print_help(void) {
PRINT_TEXT("Available CMDs:\n"
" h: Help\n"
" r: Restart\n"
" u: Upload\n"
#if (SPI_EN != 0)
" s: Store to flash\n"
" l: Load from flash\n"
#endif
#if (XIP_EN != 0)
" x: Boot from flash (XIP)\n"
#endif
" e: Execute");
}
/**********************************************************************//**
* Start application program.
*
* @param boot_xip Set to boot via XIP.
**************************************************************************/
void start_app(int boot_xip) {
// deactivate global IRQs
neorv32_cpu_csr_clr(CSR_MSTATUS, 1 << CSR_MSTATUS_MIE);
register uint32_t app_base = (uint32_t)EXE_BASE_ADDR; // default = start at beginning of IMEM
#if (XIP_EN != 0)
if (boot_xip) {
app_base = (uint32_t)(XIP_MEM_BASE_ADDRESS + SPI_BOOT_BASE_ADDR); // start from XIP mapped address
}
#endif
PRINT_TEXT("Booting from ");
PRINT_XNUM(app_base);
PRINT_TEXT("...\n\n");
#if (STATUS_LED_EN != 0)
// shut down heart beat LED
if (neorv32_gpio_available()) {
neorv32_gpio_port_set(0);
}
#endif
// wait for UART0 to finish transmitting
while (neorv32_uart0_tx_busy());
// start application
asm volatile ("jalr ra, %0" : : "r" (app_base));
__builtin_unreachable();
while (1); // should never be reached
}
/**********************************************************************//**
* Bootloader trap handler. Used for the MTIME tick and to capture any other traps.
*
* @note Since we have no runtime environment, we have to use the interrupt attribute here.
**************************************************************************/
void __attribute__((interrupt("machine"))) bootloader_trap_handler(void) {
register uint32_t mcause = neorv32_cpu_csr_read(CSR_MCAUSE);
// Machine timer interrupt
if (mcause == TRAP_CODE_MTI) { // raw exception code for MTI
#if (STATUS_LED_EN != 0)
if (neorv32_gpio_available()) {
neorv32_gpio_pin_toggle(STATUS_LED_PIN); // toggle status LED
}
#endif
// set time for next IRQ
if (neorv32_mtime_available()) {
neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + (NEORV32_SYSINFO->CLK/4));
}
}
// Bus store access error during get_exe
else if ((mcause == TRAP_CODE_S_ACCESS) && (getting_exe)) {
system_error(ERROR_SIZE); // -> seems like executable is too large
}
// Anything else (that was not expected); output exception notifier and try to resume
else {
register uint32_t mepc = neorv32_cpu_csr_read(CSR_MEPC);
#if (UART_EN != 0)
if (neorv32_uart0_available()) {
PRINT_TEXT("\nERR_EXC ");
PRINT_XNUM(mcause);
PRINT_PUTC(' ');
PRINT_XNUM(mepc);
PRINT_PUTC(' ');
PRINT_XNUM(neorv32_cpu_csr_read(CSR_MTVAL));
PRINT_TEXT("\n");
}
#endif
neorv32_cpu_csr_write(CSR_MEPC, mepc + 4); // advance to next instruction
}
}
/**********************************************************************//**
* Get executable stream.
*
* @param src Source of executable stream data. See #EXE_STREAM_SOURCE_enum.
**************************************************************************/
void get_exe(int src) {
getting_exe = 1; // to inform trap handler we were trying to get an executable
// flash image base address
uint32_t addr = (uint32_t)SPI_BOOT_BASE_ADDR;
// get image from UART?
if (src == EXE_STREAM_UART) {
PRINT_TEXT("Awaiting neorv32_exe.bin... ");
}
#if (SPI_EN != 0)
else {
PRINT_TEXT("Loading (@");
PRINT_XNUM(addr);
PRINT_TEXT(")...\n");
// flash checks
if (((NEORV32_SYSINFO->SOC & (1<<SYSINFO_SOC_IO_SPI)) == 0) || // SPI module not implemented?
(spi_flash_check() != 0)) { // check if flash ready (or available at all)
system_error(ERROR_FLASH);
}
}
#endif
// check if valid image
uint32_t signature = get_exe_word(src, addr + EXE_OFFSET_SIGNATURE);
if (signature != EXE_SIGNATURE) { // signature
system_error(ERROR_SIGNATURE);
}
// image size and checksum
uint32_t size = get_exe_word(src, addr + EXE_OFFSET_SIZE); // size in bytes
uint32_t check = get_exe_word(src, addr + EXE_OFFSET_CHECKSUM); // complement sum checksum
// transfer program data
uint32_t *pnt = (uint32_t*)EXE_BASE_ADDR;
uint32_t checksum = 0;
uint32_t d = 0, i = 0;
addr = addr + EXE_OFFSET_DATA;
while (i < (size/4)) { // in words
d = get_exe_word(src, addr);
checksum += d;
pnt[i++] = d;
addr += 4;
}
// error during transfer?
if ((checksum + check) != 0) {
system_error(ERROR_CHECKSUM);
}
else {
PRINT_TEXT("OK");
exe_available = size; // store exe size
}
getting_exe = 0; // to inform trap handler we are done getting an executable
}
/**********************************************************************//**
* Store content of instruction memory to SPI flash.
**************************************************************************/
void save_exe(void) {
#if (SPI_EN != 0)
// size of last uploaded executable
uint32_t size = exe_available;
if (size == 0) {
PRINT_TEXT("No executable available.");
return;
}
uint32_t addr = (uint32_t)SPI_BOOT_BASE_ADDR;
// info and prompt
PRINT_TEXT("Write ");
PRINT_XNUM(size);
PRINT_TEXT(" bytes to SPI flash @ ");
PRINT_XNUM(addr);
PRINT_TEXT("? (y/n) ");
char c = PRINT_GETC();
PRINT_PUTC(c);
if (c != 'y') {
return;
}
// check if flash ready (or available at all)
if (spi_flash_check() != 0) {
system_error(ERROR_FLASH);
}
PRINT_TEXT("\nFlashing... ");
// clear memory before writing
uint32_t num_sectors = (size / (SPI_FLASH_SECTOR_SIZE)) + 1; // clear at least 1 sector
uint32_t sector = (uint32_t)SPI_BOOT_BASE_ADDR;
while (num_sectors--) {
spi_flash_erase_sector(sector);
sector += SPI_FLASH_SECTOR_SIZE;
}
// store data from instruction memory and update checksum
uint32_t checksum = 0;
uint32_t *pnt = (uint32_t*)EXE_BASE_ADDR;
addr = addr + EXE_OFFSET_DATA;
uint32_t i = 0;
while (i < size) { // in chunks of 4 bytes
uint32_t d = (uint32_t)*pnt++;
checksum += d;
spi_flash_write_word(addr, d);
addr += 4;
i += 4;
}
// write header
spi_flash_write_word(SPI_BOOT_BASE_ADDR + EXE_OFFSET_SIGNATURE, EXE_SIGNATURE); // EXE signature
spi_flash_write_word(SPI_BOOT_BASE_ADDR + EXE_OFFSET_SIZE, size); // size
spi_flash_write_word(SPI_BOOT_BASE_ADDR + EXE_OFFSET_CHECKSUM, (~checksum)+1); // checksum (sum complement)
PRINT_TEXT("OK");
#endif
}
/**********************************************************************//**
* Get word from executable stream
*
* @param src Source of executable stream data. See #EXE_STREAM_SOURCE_enum.
* @param addr Address when accessing SPI flash.
* @return 32-bit data word from stream.
**************************************************************************/
uint32_t get_exe_word(int src, uint32_t addr) {
union {
uint32_t uint32;
uint8_t uint8[sizeof(uint32_t)];
} data;
uint32_t i;
for (i=0; i<4; i++) {
if (src == EXE_STREAM_UART) {
data.uint8[i] = (uint8_t)PRINT_GETC();
}
else {
data.uint8[i] = spi_flash_read_byte(addr + i); // little-endian byte order
}
}
return data.uint32;
}
/**********************************************************************//**
* Output system error ID and halt.
*
* @param[in] err_code Error code. See #ERROR_CODES and #error_message.
**************************************************************************/
void system_error(uint8_t err_code) {
PRINT_TEXT("\a\nERR_"); // output error code with annoying bell sound
PRINT_TEXT(error_message[err_code]);
neorv32_cpu_csr_clr(CSR_MSTATUS, 1 << CSR_MSTATUS_MIE); // deactivate IRQs
// permanently light up status LED
#if (STATUS_LED_EN != 0)
if (neorv32_gpio_available()) {
neorv32_gpio_port_set(1 << STATUS_LED_PIN);
}
#endif
while(1); // freeze
}
/**********************************************************************//**
* Print 32-bit number as 8-digit hexadecimal value (with "0x" suffix).
*
* @param[in] num Number to print as hexadecimal.
**************************************************************************/
void print_hex_word(uint32_t num) {
#if (UART_EN != 0)
static const char hex_symbols[16] = "0123456789abcdef";
PRINT_PUTC('0');
PRINT_PUTC('x');
int i;
for (i=28; i>=0; i-=4) {
PRINT_PUTC(hex_symbols[(num >> i) & 0xf]);
}
#endif
}
// -------------------------------------------------------------------------------------
// SPI flash driver functions
// -------------------------------------------------------------------------------------
/**********************************************************************//**
* Wake up flash from deep sleep state
**************************************************************************/
void spi_flash_wakeup(void) {
#if (SPI_EN != 0)
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_WAKE);
neorv32_spi_cs_dis();
#endif
}
/**********************************************************************//**
* Check if SPI and flash are available/working by making sure the WEL
* flag of the flash status register can be set and cleared again.
*
* @return 0 if success, -1 if error
**************************************************************************/
int spi_flash_check(void) {
#if (SPI_EN != 0)
// The flash may have been set to sleep prior to reaching this point. Make sure it's alive
spi_flash_wakeup();
// set WEL
spi_flash_write_enable();
if ((spi_flash_read_status() & (1 << FLASH_SREG_WEL)) == 0) { // fail if WEL is cleared
return -1;
}
// clear WEL
spi_flash_write_disable();
if ((spi_flash_read_status() & (1 << FLASH_SREG_WEL)) != 0) { // fail if WEL is set
return -1;
}
return 0;
#else
return -1;
#endif
}
/**********************************************************************//**
* Read byte from SPI flash.
*
* @param[in] addr Flash read address.
* @return Read byte from SPI flash.
**************************************************************************/
uint8_t spi_flash_read_byte(uint32_t addr) {
#if (SPI_EN != 0)
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_READ);
spi_flash_write_addr(addr);
uint8_t rdata = neorv32_spi_trans(0);
neorv32_spi_cs_dis();
return rdata;
#else
return 0;
#endif
}
/**********************************************************************//**
* Write byte to SPI flash.
*
* @param[in] addr SPI flash read address.
* @param[in] wdata SPI flash read data.
**************************************************************************/
void spi_flash_write_byte(uint32_t addr, uint8_t wdata) {
#if (SPI_EN != 0)
spi_flash_write_enable(); // allow write-access
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_PAGE_PROGRAM);
spi_flash_write_addr(addr);
neorv32_spi_trans(wdata);
neorv32_spi_cs_dis();
while(1) {
if ((spi_flash_read_status() & (1 << FLASH_SREG_BUSY)) == 0) { // write in progress flag cleared?
break;
}
}
#endif
}
/**********************************************************************//**
* Write word to SPI flash.
*
* @param addr SPI flash write address.
* @param wdata SPI flash write data.
**************************************************************************/
void spi_flash_write_word(uint32_t addr, uint32_t wdata) {
#if (SPI_EN != 0)
union {
uint32_t uint32;
uint8_t uint8[sizeof(uint32_t)];
} data;
data.uint32 = wdata;
// little-endian byte order
int i;
for (i=0; i<4; i++) {
spi_flash_write_byte(addr + i, data.uint8[i]);
}
#endif
}
/**********************************************************************//**
* Erase sector (64kB) at base address.
*
* @param[in] addr Base address of sector to erase.
**************************************************************************/
void spi_flash_erase_sector(uint32_t addr) {
#if (SPI_EN != 0)
spi_flash_write_enable(); // allow write-access
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_SECTOR_ERASE);
spi_flash_write_addr(addr);
neorv32_spi_cs_dis();
while(1) {
if ((spi_flash_read_status() & (1 << FLASH_SREG_BUSY)) == 0) { // write in progress flag cleared?
break;
}
}
#endif
}
/**********************************************************************//**
* Enable flash write access.
**************************************************************************/
void spi_flash_write_enable(void) {
#if (SPI_EN != 0)
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_WRITE_ENABLE);
neorv32_spi_cs_dis();
#endif
}
/**********************************************************************//**
* Disable flash write access.
**************************************************************************/
void spi_flash_write_disable(void) {
#if (SPI_EN != 0)
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_WRITE_DISABLE);
neorv32_spi_cs_dis();
#endif
}
/**********************************************************************//**
* Read flash status register.
*
* @return SPI flash status register (32-bit zero-extended).
**************************************************************************/
uint8_t spi_flash_read_status(void) {
#if (SPI_EN != 0)
neorv32_spi_cs_en(SPI_FLASH_CS);
neorv32_spi_trans(SPI_FLASH_CMD_READ_STATUS);
uint8_t res = neorv32_spi_trans(0);
neorv32_spi_cs_dis();
return res;
#else
return 0;
#endif
}
/**********************************************************************//**
* Send address word to flash (MSB-first, 16-bit, 24-bit or 32-bit address size).
*
* @param[in] addr Address word.
**************************************************************************/
void spi_flash_write_addr(uint32_t addr) {
#if (SPI_EN == 0)
return;
#endif
union {
uint32_t uint32;
uint8_t uint8[sizeof(uint32_t)];
} address;
address.uint32 = addr;
#if (SPI_FLASH_ADDR_BYTES == 2)
neorv32_spi_trans(address.uint8[1]);
neorv32_spi_trans(address.uint8[0]);
#elif (SPI_FLASH_ADDR_BYTES == 3)
neorv32_spi_trans(address.uint8[2]);
neorv32_spi_trans(address.uint8[1]);
neorv32_spi_trans(address.uint8[0]);
#elif (SPI_FLASH_ADDR_BYTES == 4)
neorv32_spi_trans(address.uint8[3]);
neorv32_spi_trans(address.uint8[2]);
neorv32_spi_trans(address.uint8[1]);
neorv32_spi_trans(address.uint8[0]);
#else
#error "Unsupported SPI_FLASH_ADDR_BYTES configuration!"
#endif
}